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Quantum Limits on Precision Measurement of Phase
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%e investigate the quantum mechanical bound to how precisely we can determine a phase shift
given only a constraint on the mean total number of photons available. By considering how quickly
one can gain information from data analysis, we derive the sensitivity achievable (in principle)
for measurements involving even highly non-Gaussian noise. Using these results we calculate the
sensitivity of several recent proposals for precision phase measurement, and show that no proposal
to date beats the sensitivity believed achievable by squeezed state interferometry.
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Small changes in the phase of light, detected interfer-
ometrically, have served to probe the fundamental laws
of physics for over a hundred years [1, 2]. However, only
recently have we begun to formulate precisely and to in-

vestigate the question of how quantum mechanics limits
measurements of phase shifts. Detailed consideration of
this issue has been delayed because of the lack of a con-
sensus over how phase measurements should be treated
within quantum theory.

Classically, phase is just a parameter of angular loca-
tion, on phase space, of the Liouville distribution of a
single-mode harmonic oscillator. Quantum mechanically
the idealized description of the phase shift 4 induced in

light by a linear dispersive optical element is given by

[g@) = exp( —i4'n) [Q), where n is the photon number op-
erator, and [g) is some fiducial state of the light. That is,
quantum mechanically a shik in phase is still a c-number
parameter (describing a material property of our optical
element at a given frequency). For many years quantum
theoretical approaches [3—9] dealing with phase measure-
ments have concentrated on the paradigm that to each
classical variable there is a corresponding natura/ quan-
tum observable. However, since 4 is a parameter it may
be determined via data analysis from any suitable mea-
surernent having a parametric dependence on it——this ad-
mits a much broader class of measurements for the pre-
cision determination of phase shifts than does the more
dogmatic traditional approach.

The simplest example of this is standard interferom-
etry: Measurements are performed by interfering the
shifted state with one (from the second interferometer
arm) having a fixed phase relationship to the fiducial
state, and then counting photons. The interference en-
sures that the measured photocount distribution p(n[4)
has a parametric dependence on the phase shift. Math-
ematically, we may describe the phase as a location pa-
rameter of one state relative to another along curves in
Hilbert space [10] generated by in The pa—ram. etric
dependence of the outcomes p((~4) is affected both by
which curve we access through our choice of fiducial state
and by the observable ( used. How we make these choices
is part of the overall experimental design —determining

the sensitivity achievable.
This description of 4 as labeling curves in Hilbert space

yields several formal advantages. It forms a very general
language [10],within standard quantum theory, in which
to describe all types of precision measurements including
those like time [11,12] and phase where the usual oper-
ator approach is problematic. Further, it pinpoints the
importance of inference (i.e. , "classical" data analysis)
as a fundamental part of precision measurements within
quantum theory. We now turn to what must go into
an analysis of the ultimate quantum limits to measuring
phase.

Without constraints on our resources there would be
no limit to the precision with which we could determine a
phase shift. The least restrictive constraint we can have
is one on the total average energy available, thus we will
assume that there is some limit on the mean (as both an
ensemble and a temporal average) total number of pho-
tons available Nt t. If this energy were derived from a
laser with mean power P (at frequency 0), and if the
phase shift were only stable over the time ~, we would
have Nq«Pr/hA (2vrh is Planck's constant). Any
attack on the question of ultimate efficiency must allow

for schemes that split the total energy into smaller pack-
ets and for the subsequent data analysis of the multiple
measurements. For "symmetric" schemes, where the N
packets are identical quantum states with mean photon
number (n), this split must satisfy

x...= (n)x.
We investigate such schemes where all of the measure-
ments are of the same variable.

How well can data be analyzed? The Cramer-Rao
lower bound (GRLB) [13] gives a strict lower bound for
the standard deviation of any estimate of 4 [14],based on
N independently but identically distributed observations
of some variable (, as

AC & 1/V XF,
when the Fisher information F = I d( [p(([4')'] /p(([4')
exists (throughout, primes denote the derivative 0/BC).

For Gaussian noise this bound is easily achieved for all
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N by using the mean of the data as the estimator, so
the sensitivity after N measurements improves as 1/~N
over the first. Coherent and squeezed state interferome-
try have essentially Gaussian noise in the limit that in-
tensity fluctuations can be approximated by a quadra-
ture phase amplitude. For coherent state interferometry,
where a single measurement has sensitivity 1/2/(A), N
measurements will give

1 1

2/(A)N 2N... '

which is independent of the split in our resources; this
is the shot noise limit. Squeezed state interferometry is
believed [15] to be able to achieve a single measurement
sensitivity scaling as 1/(n). The multiple measurement
sensitivity would then be 64 1/(A)vN, which for
fixed Nt, t is optimized by using as few pulses as possible.
Ideally for N = 1 we attain

b,C 1/Nt, g )

with a multiplicative constant of O(1); we ignore such
constants in the comparison of very difFerent schemes,
and ask simply for the scaling law.

For non-Gaussian noise the CRLB cannot be achieved,
in general, for any method of data analysis. Thus, we
must concentrate on specific methods. We use here
the method called maximum likelihood (ML) estimation;
other methods are unlikely to be significantly more effi-

cient. For the N data points (i, (2, . . . , (iv, each dis-
tributed via p((lO), Bayes' theorem says that the "like-
lihood" for 4 will be

p(('I@)
i=1

if we have no initial prejudice. The ML estimate is the
value of 4 that maximizes this likelihood function, and
typical measures of our confidence in this value are the
standard deviation b,@ or the 68% confidence interval

(AC)es% ~ Further, Fisher's theorem [13] tells us that as
N ~ oo the likelihood function approaches a Gaussian
distribution with standard deviation b,C ~ 1/gNF.
Thus ML estimation achieves the CRLB for large enough
data sets, and so is asymptotically efficient.

Figure 1 gives a schematic picture of the conver-
gence of ML estimation for non-Gaussian noise based
on the CRLB (dashed line) and Fisher's theorem. The
schematic convergence of the ML estimator (solid line)
shows two regimes: asymptotic behavior matching the
CRLB and a preasymptotic fast convergence. Where
should the split in our resources be made based on
this picture? Let us parametrize the split by s with
N = sNt~q and (A) = 1/s.

Asymptotic regime. —If the Fisher information scales
as F (A)~, then the asymptotic ML sensitivity will
scale as

ae = s&~-'&~'/gN, .,

N

FIG. 1. Log-log plot of 64 vs N showing (solid line) the
schematic convergence of the ML estimator with increasing
sample size for fixe (A) (and hence fixed F) The. location
of the "knee, " where the fast preasymptotic convergence of
non-Gaussian noise turns into the asymptotic behavior ap-
proaching 1/v NF of the CRLB (dashed line), gives the opti-
mal split in Nt, t ——(A)N for multiple measurement schemes.

If (i) f ) 1, then the optimal split (inside this regime)
will be at the "knee" between the two regimes; (ii) f = 1,
then the sensitivity is independent of the split so we may
choose the knee; and (iii) f ( 1, then this scheme is worse
than coherent state interferometry so we ignore it.

Preasymptotic regime. —If we suppose that the sensi-
tivity here scales as

1 1
(A)~N~ s~ ~N~', '

then (i) for 5 & a, the knee again is optimal; and (ii) for
b ( a, the optimal split is at N = 1, in which case the
multiple measurement strategy fails to be interesting.

These scaling arguments suggest that, as long as we
beat shot noise, either the optimal split occurs at the
knee or the multiple measurement strategy should be
abandoned. It is possible that the preasymptotic ML
convergence has a more complicated behavior, perhaps
with multiple knees, but we only expect this to occur if
the probability distribution for observations p((lO) has
intermediate scales (i.e. , scales other than those which
describe the knee location).

Braunstein [16] has calculated the first O(1/N) correc-
tion to Fisher's theorem as

1 N~, (11
NF 1+ N'+Ol N, I

where the quantity N, is a functional of the distribution
of observations p((l4'). We see that the knee between the
asymptotic CRLB behavior and the preasymptotic fast
convergence will occur at N N, . Thus, the optimum
multiple measurement sensitivity will occur at N N„,
with

& (64)2 & (2)N~r+ var

unless it is beaten by a single measurement using all the
resources, or by a split at some intermediate knee in the
preasymptotic ML convergence. In any case this range of
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sensitivities is attainable even if it fails to be optimum.
Our formulation of phase measurement is not preju-

diced, so if we learned how to make ideal "phase" mea-
surements then we could apply the above multiple mea-
surement strategy to them as well. In this case the dis-
tribution of observations is expected to be given by the
Susskind-Glogower (SG) [5] phase distribution
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expanded here in the number state basis, and Q@) is the
state measured. In this case, since 4 is a "translation"
parameter, the knee location simplifies [16] to

2
Nvar =

+2

o2 I4
s

3p

M ime
[@c,) oc ) ]m),

m=O

where M is a cutoff, and they somewhat arbitrarily fixed
r = 1; (ii) Shapiro and Shepard (SS) [20] modified the
original SSW proposal by allowing r ) 0 (we restrict our
discussion to 0 & r & 1); and (iii) Dowling [21] modified
SSW differently by introducing a smooth cutoff p, ,

~{iC—1ip)m
~gg) oc ) ~m) .

m=O

The SG distributions for each of these proposals have
similar features: A fiat distribution (from —m to vr)

gives way to a scale free logarithmic singularity as P ap-
proaches C, and at a scale determined by the cutoff this
"singularity" is softened into a rounded cap. There are
therefore only two scales appearing in each of these dis-
tributions. The first determines when the deviation from
a flat distribution can be seen; however, the knee corre-
sponding to this scale will occur with sensitivity AC 1
since the behavior is dominated by the random ML es-
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for unbiased estimation. Further, we see that for single
measurements the ML uncertainty equals the ideal phase
measurement uncertainty, i.e. , 44 = 4P. Thus, we can
make comparisons with single measurement schemes [17,
18] which have obtained AP 1/Nt, t, indeed, the mul-

tiplicative constants appear to beat squeezed state inter-
ferometry, but may not in practice if there are hidden
costs to ideal phase measurements.

Several recent proposals [19—21] based on ideal phase
measurements have claimed a sensitivity for measuring
phase, using the multiple measurement strategy, scaling
as

1/Nt t,
in terms of the available resources (with this scaling we

could pay almost any hidden cost): (i) Shapiro, Shepard,
and Wong (SSW) [19] obtained the family of states

timation of a uniform distribution. The cutoff gives the
second scale, and sets the size of N «and F by describing
the finest structures that appear in the SG distributions.
From our earlier scaling arguments, therefore, we con-
clude that the optimum multiple measurement sensitivity
for t;hese proposals will occur at; the knee N N „.

Figures 2 and 3 compare AC of the CRLB (dashed
line) and the O(1/N) correction of Eq. (1) (dotted line)
with the (AC')ss% calculated from Monte Carlo simula-

tion (joined dots) [22, 23] for the SSW proposal. Near the
Gaussian asymptotic regime the standard deviation and
68% confidence intervals are almost equal, so this com-

parison is sensible. Figure 2 makes this comparison for
fixed Nt, t ——60; the giant "error bar" plotted between
the dotted and dashed curves at N = N „shows the
range predicted by Eq. (2). Figure 3 shows all the opti-
mum (AC')ss% calculated in the Monte Carlo simulations,
and the ranges (dashed to dotted lines) as predicted by
Eq. (2). These results give us confidence in both the
scaling arguments and which scales are relevant.

Figure 4 shows a log-log plot of AO = 1/gN «F vs

Nt, t, which is the lower "bound" in Eq. (2) for all three

N ot
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FIG. 3. Log-log plot of AC vs Nt, t, for the optimal split in

Ntot ——(n)N for the SSW proposal. The solid line is the best
fit through the optimum (AC)68% in Monte Carlo simulations

(from Refs. [22, 23]). The dashed and dotted curves show the
lower and upper "bounds" for the range in Eq. (2).

0.02--

FIG. 2. Log-log plot of AC vs N for fixed Nq, t ——60
for the SSW proposal. The connected dots show Monte
Carlo calculations of (DC)6s% (from Refs. [22, 23]). The
dashed and dotted curves show the CRLB behavior and the
O(1/N) correction in Eq. (1), respectively. The giant "er-
ror bar" between these theoretical curves shows the range
1/v'N„, „F,y 2/gN „F predicted from the knee location
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FIG. 4. Log-log plot of A4 = 1/gN»r F vs Ntot &
showing

the convergence of ML estimation for the optimal resource
split as predicted by the knee location N „.The solid line is
the SSW proposal (r = 1), and the SS proposal for r = 0.1
and 0.01; the dot-dashed line is that for the Dowling proposal.

proposals: The SSW (i.e. , r = 1) and SS proposals with
r = 0.1 and 0.01 are virtually indistinguishable (solid
line); and the Dowling proposal (dot-dashed line). At
Nt, t 30000 each of these proposals has a rate of con-
vergence which scales as

EC' I/Nt '~,

a sensitivity much smaller than the original prediction of
I/Ntz, . These results are particularly surprising for the
small r values of the SS proposal. In the limit r ~ 0
the corresponding SG distribution is flat, and so it has
been argued [24] that multiple measurement schemes are
completely insensitive in this limit. This argument re-
lies on the uniformity of this limit; however, as Fig. 4
shows there is no degradation in the performance of ML
estimation over the range r = 1 to 0.01.

Phase is just a c-number parameter, describing the lo-
cation of a state on a curve in Hilbert space. Any attack
on the question of whether there is a quantum limit to
how efficiently we can measure phase shifts must allow for
schemes that split the total energy available into smaller
packets and for the subsequent data analysis of the mul-

tiple measurements. For symmetric schemes we have de-
rived the sensitivity of maximum likelihood estimation
near the optimal energy split. We considered several such
schemes based on the "quantum theory of phase measure-
ment" for states having highly non-Gaussian noise. For
Nt, ~

( 30000 these schemes do not beat the single mea-
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