
VoLUME 69 21 DECEMBER 1992 NUMBER 25

Origin of the Geometric Forces Accompanying Berry's Geometric Potentials
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We consider the dynamics of a particle carrying a magnetic moment in a strong magnetic field whose
direction varies slowly in space. In particular, we discuss the geometric Lorentz-type and electric-type
forces that were discovered in studies of Berry's phase. We show that the Lorentz-type force felt by the
particle is caused by a small misalignment of the magnetic moment with respect to the magnetic field
while the electric-type force is the time average of a strong oscillatory force induced by the precession of
the magnetic moment.
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The investigation of the geometric phase [ll, initiated
by Berry in 1984 [2], has led to a series of studies of the
appearance of gauge fields in adiabatic dynamics. The
canonical example discussed in these studies is the prob-
lem of a neutral particle carrying a magnetic moment,
moving in a magnetic field whose direction varies in

space. These studies, to be reviewed below, have revealed
surprising results regarding the dynamics of the particle
[3]. In this work we discuss this problem through its
equations of motion, with the goal of exploring the physi-
cal origins of these results.

The problem we analyze is that of a magnetic moment
in a static, space-dependent, magnetic field. The Hamil-
tonian describing the system is

H =P'/2m —y)B(x) [/ b(x),

where / is the internal angular momentum carried by the
magnetic moment, /s=—y/ is the magnetic moment of the
particle, (B(x)~ is the magnitude of the magnetic field,
and b(x) is a unit vector in the direction of the magnetic
field. For brevity, from now on we absorb the factor y
into the magnitude of the field ~B(x)~. We also omit the
x dependence of the magnetic field wherever this does not
lead to confusion. Particular examples of the Hamiltoni-
an (1) were considered in various contexts by several au-
thors [3-10], with the following similar results. If the
magnetic field varies slowly enough in space, the adiabat-
ic approximation can be employed. Employing that ap-
proximation, one finds that the dynamics of the internal

angular momentum l (the fast degree of freedom of the
problem) is characterized by the action l t—= l b. This ac-
tion, which is the component of l parallel to the magnetic
field, is an adiabatic invariant. The effective Hamiltonian
governing the dynamics of the particle (the slow degree
of freedom of the problem) is found to include geometric
vector and scalar potentials, induced by the spatial varia-
tion of b [3]:

[P —A(b(x), l t)]
2m

where l—= ~/(. The vector and scalar potentials depend on
the direction of the magnetic field, but do not depend on
the magnitude of the field ~B~ [3]. The dynamics of the
particle is affected by the vector potential A(b, /t) in a
way similar to the effect of an electromagnetic vector po-
tential on a charged particle. If the problem is solved
quantum mechanically, one finds effects analogous to the
Aharonov-Bohm eAect, namely, geometric phases in-
duced by the vector potential in interference phenomena.
If the problem is treated classically, the vector potential
aff'ects the dynamics only through its curl, i.e., it induces
a Lorentz-type force. The term "Lorentz type" refers to
a force whose direction is perpendicular to that of the
particle's velocity, and whose magnitude is proportional
to that velocity. The scalar potential @(b,/ —

/~~) affects
the classical dynamics of the particle through its gradient,
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)8( ) )I
&b( ) (3)

dl =I x 8(x(t) ),
dt

(4)

where F; is the ith component of the force exerted on the
particle. The force F; is composed of two components.
The first component originates in the variation of the

that induces an "electric-type" force. The scalar poten-
tial and the electric-type force are proportional to l I]
and are inversely proportional to the mass of the parti
cle. We conclude this review of previous works by ern-

phasizing that the induced Lorentz-type and electric-type
forces are independent of the magnitude of the magnetic
field ~B~ once that magnitude is strong enough to justify
an adiabatic approximation.

The Lorentz-type force acting on a neutral particle due
to the interaction of its magnetic moment with a space-
dependent magnetic field is a surprising consequence of
the spatial variation of b. It is surprising because the
equations of motion derived from the full Hamiltonian
(1) [see Eqs. (3) and (4) below] do not seem to include
any velocity-dependent forces, and do seem to indicate
that any force exerted on the particle should scale with
the magnitude of the magnetic field ~B~. In this work we

study these equations of motion. We first show that an
approximation in which the magnetic moment is assumed
to be aligned with the magnetic field at any point along
the particle's path necessarily misses the two geometric
forces. To reveal the origin of the Lorentz-type force, we
then study the equation of motion for I, expressed in a ro-
tating frame of reference in which the magnetic field al-
ways aligns with the z axis. In that frame of reference
the magnetic moment is subject to the influence of an

A A

effective magnetic field 8' =8+b x b, where the time
dependence of b originates from the motion of the parti-
cle in a region of space where b varies. The Lorentz-type
force then results from approximating the magnetic mo-
ment as following the direction of 8', rather than that of
B; i.e., it results from a slight misalignment of the mag-
netic moment relative to the direction of the magnetic
field. This misalignment is of the order of x/~B~, where x
is the velocity of the particle. We show that the force
acting on the particle is proportional to the product of the
magnitude of the magnetic field ~B~, with the misalign-
ment of the magnetic moment, and that this product does
indeed yield a ~B~-independent, velocity-dependent,
Lorentz-type force. After that discussion, we turn to ana-
lyze the electric-type force, and show that this force is a
time average of a strong oscillatory force, induced by the
precession of the magnetic moment. We also explore the
origin of the unique mass dependence of that force.

Our analysis of the problem starts from the equations
of motion governing the dynamics of the particle and its
internal angular momentum, as they are derived from the
full Hamiltonian (1):

magnitude of the magnetic field ~8~. It is proportional to
l]~, and to the derivative of the magnitude of the magnetic
field. The second component originates from spatial vari-
ations of the direction of the field, and is therefore the
relevant term for the understanding of the Lorentz-type
and electric-type forces. However, since Bb(x)/t)x; is

perpendicular to b(x), this second term is proportional to
the part of I perpendicular to the magnetic field. There-
fore, the roots of the Lorentz type-and electric type-

forces lie in the projection of the magnetic moment I on
the plane perpendicular to the magnetic field

Following these observations, we now turn to an ap-
proximation scheme for the solutions to Eqs. (3) and (4).
We start with Eq. (4), trying to obtain a solution for the
angular momentum l(t) in terms of the path of the parti-
cle. Then, we substitute that solution in the equation for
the position (3). As mentioned above, in the adiabatic
limit, i.e., when ~8~ ~, the angle between I and the
magnetic field B(x(t)) is an adiabatic invariant. We first
focus on the case in which this angle is 0, namely, the
case in which the magnetic moment approaches a direc-
tion parallel to the magnetic field. As shown below, for
any finite value of the magnetic field, there is a com-
ponent of the magnetic moment I perpendicular to the
magnetic field 8, and this component is the origin of the
Lorentz-type force.

We turn to Eq. (4), assume that the time-dependent
magnetic field 8(x(t)) is known, and try to solve for I.
The main difficulty in solving Eq. (4) is, of course, the
time dependence of b. Attempting to "freeze" this time
dependence, we express the problem in terms of a time-
dependent coordinate frame, in which b aligns with the z
axis. We denote by I' the vector I described in terms of
this time-dependent reference frame, and by m(t) the
generator of the infinitesimal rotation that makes the z
axis align with b. In other words, r'=r+ rx m(t)dt is the
infinitesimal rotation transforming a vector r in the coor-
dinate frame where the z axis aligns with b(t) to the vec-
tor r' in a coordinate frame where the z axis aligns with

b(t+dt) =b(t)+bdt The alignm. ent of b with the z
axis does not uniquely define the time-dependent frame,
since it does not specify the directions of the time depen-
dent x,y axes. Out of the infinitely many possible choices
for these directions we choose the one that yields the
smallest m(t), i.e., the one in which m(t) is perpendicular
both to b(t) and to b(t+dt). Consequently,

m(t) =zxz, (5)
where z is the unit vector b as seen in the time-dependent

frame, and z is the vector b as seen in the time-dependent
frame. This choice of m(t) makes the coordinate frame
follow a parallel transport trajectory [3,11].The equation
of motion for the vector I' is given by [12,13]

t

=I'x [~B(x(t))~z+zxz] . (6)
dt

The equation of motion for I' is similar to that of I [Eq.

3594



VOLUME 69, NUMBER 25 PH YSICAL REVI EW LETTERS 21 DECEM BER 1992

(4)], but with the magnetic field 8 replaced by 8'
=IB(x(t))Ii+ixi. Hence, the effective magnetic field

felt by the vector l' is composed of two components: One
is the adiabatic component, which is the original magnet-
ic field, transformed to align with the z axis. The other is

the nonadiabatic component, which arises from the time
dependence of the reference frame, i.e., from the time
dependence of b. The nonadiabatic component of 8' is

perpendicular to the adiabatic one. Approximating the
solution to Eq. (6) by l'=lz amounts then to neglecting a

A

component of magnitude b relative to a component of
magnitude IBI. When attempting to improve this ap-
proximation, it is important to note that although the
direction of 8' is generally time dependent, its time
dependence is, in the limit IBI ~, slower than that of
b. While the latter is independent of the magnitude of
the magnetic field I BI, the former is at least of the order
of I BI '. Thus, a refined approximation to the solution
of Eq. (6) is

l'=(l/IB'I)(IBli+ixz), (7)
i.e., the magnetic moment is approximated to follow the
direction of 8', rather than that of B. As can be seen by
direct substitution of Eq. (7) in Eq. (6), our refined ap-
proximation is indeed closer to the exact solution. The
expression for the vector l in the "laboratory, " static,
frame is obtained from Eq. (7) by the replacements

A A A

z 1 and z b. Note that b depends on time only
through the time dependence of the particle's path, x(t).

A Jl

Thus, b=xj(t) Bb/8x~ (a summation over repeated in-

dices is understood). Therefore, the magnetic moment
has a component perpendicular both to the direction of
the magnetic field b, and to the time derivative of this

direction b The m. agnitude of this component is propor-
tional to the velocity of the particle, and inversely pro
portional to the strength of the magnetic field

Although this conclusion appears, at first glance, to
contradict the adiabatic invariance of the action, it actu-
ally does not. The adiabatic invariance states that
d(l 1)/dt =0. However, using Eq. (4) we see that

(l 1)=l b; (8)

i.e., adiabatic invariance requires that the magnetic mo-

ment l should not have a component along b, but does not
A A

force its component along the direction b x b to vanish. It
is indeed this component that is responsible for the
Lorentz-type force.

To calculate F;, the ith component of the force acting
on the particle [Eq. (3)], we have to take the scalar prod-
uct of the magnetic moment I with the vector 88/Bx;.
This scalar product can be taken in either the static or
the time-dependent frame. We choose the static frame,
in which

~~ = tilBI b+IBI lib . (9)
Bx( Bx( &xi

The first term of Eq. (11) is the force utilized in Stern-

Gerlach-type experiments. The second term is the

I.orentz-type force. It is indeed proportional and perpen-

dicular to the velocity, and independent of IBI. It is in-

structive, at this point, to express the unit vector 1 as

1=(sinacosp, sinasinp, cosp) where a,p are functions of
x. In terms of a and p, Eqs. (10),(11) are

F; = + (aVP —PVa) sina
ex;

l + lx x (Va x VP) sina.88
Bx(

(i 2)

Note that the refinement of the adiabatic approximation
to include a component of l perpendicular to 1 does not
affect the Stern-Gerlach-type force [the first term in Eqs.
(10)-(12)]. The component of l perpendicular to 1 is of
the order of I BI ', so that it yields a correction of the or-
der of I BI to the projection of I on b, and this correc-
tion does not affect the force in the limit

I BI
Up to this stage we have limited our attention to the

case in which the magnetic moment approaches a com-
plete alignment with the magnetic field. We now discuss
the case in which ltCl, i.e., the case in which the
Lorentz-type force is accompanied by an electric-type
one. The important new point that should be discussed in

this case is the precession of the magnetic moment
around the effective magnetic field B'. When a magnetic
moment precesses around a magnetic field, it has a time-
independent component parallel to the field, and an oscil-
latory time-dependent (precessing) component in the two
directions perpendicular to the field. Now, as Eq. (3)
shows, when the vector 1 has a component parallel to
81/8x;, this component yields a force. Since Bb/Bx; is

perpendicular to the original magnetic field B, and hence
nearly perpendicular to the effective field B', the com-

i.e., it is composed of a component in the direction of the

magnetic field, originating from variations in the inagni-

tude of the magnetic field, and a component perpendicu-

lar to the field, originating from variations in the direc-
tion of the magnetic field. While the first component is

proportional to the derivative of I BI, the second is propor-
tional to IBI itself. It is the product of that second com-

ponent with the components of l perpendicular to the

magnetic field which yields a force independent of IBI.
Calculating the force we get

lIBI ALIBI eb (-„-) (io)
IB'I ax; ax;

In the adiabatic limit, when IBI ~, the magnitude

of B' approaches that of B. Taking that limit, and ex-
A

pressing b in terms of the particle's velocity, we finally ar-
rive at

I ALIBI + . rib „ rib
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m
2

=
I 8 II ~ cos I 8 I

t
d'/ix tib

dt

The solution of Eq. (IS) is given by

Sx(t) = — cosIBIt.
I~ Bb

mlBI ax;

(is)

Two points should be stressed regarding this expression
for Bx. First, 6'x is inversely proportional to the mass.
Second, although the force is proportional to

I BI, its rap-
id oscillations make the amplitude of 6'x inversely propor-
tional to IBI. Thus, in the adiabatic limit this amplitude
becomes very small. However, as we now show, these os-
cillations are the source for the nonvanishing value of the
time average of F; The period of prece. ssion is 2tr/IBI,
and thus the average of the force over one period is given

ponent of I along t)b/|Ix; is expected to oscillate in time
too, and thus to yield an oscillatory force on the particle.
This force can be expected to be large [proportional to
IBI—see Eq. (3)], but its rapid oscillations, of frequency
IBI, can be expected to result in a zero average. A care-
ful analysis of that force, to be described below, shows
that it does not average to zero, but rather yields the

I BI-independent electric-type force.
We start our analysis by writing an expression for / as

a function of time. Following our refined approximation,
/ is expected to precess around the eA'ective magnetic
field 8'. Then, the internal angular momentum / is

I(t) =l()b'+/s [cos(I BI t )c+sin(I BIt ) (b'xc)], (13)
A

where I~~ +I& =I, b' is a unit vector in the direction of
8', and 0 is an arbitrarily chosen unit vector perpendicu-
lar to b'. In the framework of our refined approximation
l~~ and I& are constants of motion. The I~~ term of Eq.
(13) yields the Lorentz-type force given by Eqs.
(10)-(12),with I replaced by I ~~. Since this force was dis-
cussed above, we disregard it now and focus on the con-
tribution of the l~ term. For that term we neglect the
diA'erence between b and b'. This diA'erence induces a
force that vanishes in the IBI ~ limit. We choose c to
be in the direction of plb/tix;, and substitute Eq. (13) in

the expression for the force, Eq. (3). We get

=
I
8

I / cos
I
8

I
t (i4)

xg

where F; denotes the /&-dependent part of the force. As
expected, the precession of the magnetic moment induces
a big, though rapidly oscillating, force on the particle. As
a result of that force, the smooth path of the particle,
dominated by the Stern-Gerlach and Lorentz-type forces,
is modulated onto rapid oscillations, dictated by the force
(14). Altogether, the position of the particle is given by
x(t ) =xp(t ) + /tx(t ), where xp(t ) is a slowly varying
smooth function of the time determined by the forces in

Eq. (10) and the rapidly oscillating part iSx(t) satisfies
the following equation of motion:

by

(F;1(t)=
—

1

IBI 'd',
&/ e

which is, of course, just the gradient of the scalar poten-
tial

A 2

rib

4m, rixj

the scalar potential appearing in the eff'ective Hamiltoni-
an (2). The scalar potential is always positive, and it
repels the particle from regions in which b strongly
varies.

The source of the electric-type force is then in the rap-
idly oscillating force resulting from the precession of the
magnetic moment. If the mass of the particle is infinite,
it does not respond to the oscillatory force, and the time
average of the latter is zero. However, if the mass is

finite, this force induces a small-amplitude oscillatory
motion of the particle, and the combination of that
motion with the precession makes the average of the os-
cillatory force nonzero.

Finally, we note that while the Lorentz-type force does
not do work on the particle, the electric-type force does.
It then transforms kinetic energy, P /2m, into potential
energy, —IBII b(x), and vice versa. Consequently, it
also changes the value of the action 1 b. However, the
work done by the electric-type force is independent of
IBI. Thus, the change in the action is of the order of
IBI, i.e., it vanishes in the adiabatic limit.
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