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Dominance of Long-Lived Excitations in the Antiferromagnetic Spin-1 Chain NENP
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We have measured the dynamic spin correlation function for the quasi-one-dimensional 8 = 1
antiferromagnet NENP by inelastic magnetic neutron scattering. Long-lived excitations (cur ) 10)
exist for 0.3' & q & x, and within error exhaust the total moment sum rule. The dispersion relation
retains the fundamental periodicity of the spin chain, explicitly demonstrating the absence of broken
translational symmetry in the ground state. The instantaneous spin correlation function follows a
square-root Lorentzian for q vr but deviates substantially from this form for q & 0.8~.

PACS numbers: 75.25.+z, 75.10.Jm, 75.40.Gb

The antiferromagnetic integer spin chain is among the
few quantum many-body systems with a finite two-point
correlation length at T = 0 K. Theory [1], numerical
simulations [2], and experiment [3—10] have concentrated
on understanding the excitation spectrum near q = n

where the Haldane gap b, separates the singlet ground
state from the excited triplet and near q = 0 where it
is believed that a multimagnon continuum exists above
a gap 26 corresponding to the creation of two counter-
propagating q = 7r magnons [11—13]. For general q much
less is known, even about the qualitative features of the
spectrum.

We have therefore measured the excitation spectrum
for 0 & q & m in the quasi-one-dimensional S = 1 sys-
tem Ni(CgHsNz)zNOzC104 (NENP). We find that the
dynamic spin correlation function S(q, u) is dominated
by one-magnon-like resonant modes that follow a disper-
sion relation with fundamental periodicity in q of 2' and
that these excitations are well described by the single
mode approximation (SMA). This work is the first com-
plete experimental study of the excitation spectrum of a
quantum spin liquid.

A number of neutron scattering experiments in 1D S =
1 antiferromagnets have already been published [3,4, 10].
Most relevant for our work are experiments by Tun et
al. on CsNiCls that show broad peaks in the excitation
spectrum with a 2m periodicity in q [3]. These results
were obtained in the quasi-one-dimensional phase of this
material at klsT/b = 0.6.

Unlike CsNiC13, NENP apparently does not undergo
three-dimensional ordering, and hence may be studied in
the T 0 K limit. NENP is described by a 1D Hamilto-
nian with planar anisotropy

'M = J) St 8 s+iD+) (Ss)
e e

where z is the chain axis, J = 3.8—4.1 meV, and D = 0.2J
[14, 15]. Its excitation spectrum has been well stud-
ied near q = m [4] where planar anisotropy splits the
triplet excitation into two modes with energies 1.2 and

2.4 meV for fluctuations perpendicular and parallel to
the chain, respectively. These energies are modulated
slightly by weak interchain coupling (J'/J 10 ) [4],
and the lower mode is split by 0.17 meV due to in-plane
anisotropy [16].

NENP is orthorhombic with lattice parameters a
=15.223 A, 5=10.300 A, and c=8.295 A [14]. We index
momentum transfer in the corresponding reciprocal lat-
tice Q = ha'+kb'+lc'—:(hkl), and since Ni atoms in a
chain are separate by b/2 we refer to wave vector trans-
fer along the chain in terms of q = Q (b/2) = kyar. To
avoid the large incoherent cross section of hydrogen, we

grew 99% deuterated crystals of NENP [17]. Our sample
consisted of five crystals with a total mass of 6.54 g mu-

tually aligned to within 25' in the (Okl) scattering plane.
The experiments were performed on the BT4 thermal
neutron triple axis spectrometer at the National Insti-
tute of Standards and Technology. For energy transfer~ & 5 meV we fixed the incident neutron energy at 13.7
meV, and used collimations of 22'-22' and 25'-46' around
the PG(002) monochromator and analyzer, respectively
(configuration A). For hm ) 5 meV, the final energy was
13.7 meV, and collimations 22'-22'-25'-46' (configuration
B) or 40'-42'-82'-83' (configuration C). The data from
each configuration were normalized to the integrated in-

tensity of acoustic phonons [18].
Figure 1 shows the cu dependence of the neutron scat-

tering intensity for wave vector transfer q = 0.7', 0.5vr,

and 0.3vr at T = 0.3 K. We observe sharp peaks superim-
posed on weakly Q- and u-dependent incoherent inelastic
nuclear scattering. The peaks are identified as inelastic
magnetic scattering from the Ni chains because their po-
sition depends strongly on q but weakly (+ 0.2 meV)
on the other components of Q, and their intensity ver-
sus ~Q[ for fixed cosP = Q b follows the form factor
of Ni. Our principal results are evident from this figure:
(i) the magnetic scattering is sharply peaked throughout
the zone, (ii) constant q scans displaced symmetrically
about q = ~/2 have peaks at difFerent energies, and (iii)
the energy integrated intensity decreases dramatically for
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tion to the dynamic spin correlation function for kBT ((
hcui II(q) can be written [20]

8:II(,-) =8.'I'( )~(---., II( )) (2)

When the curvature of w~ II(q) is small over the range of
the resolution function the positions of peaks in constant-
C} scans directly yield points on the dispersion relation.
In our case, however, it is necessary to take resolution ef-
fects into account. This is done by comparing the exper-
imental data to the intensity distribution calculated by
inserting a trial dispersion relation in Eq. (2) and convo-
luting with the known experimental resolution [19]. The
simplest dispersion relation that is lattice periodic and
adequately fits our data is

FIG. 1. Constant-Q scans for NENP at T = 0.3 K.
Dashed lines: Background measured with the analyzer
turned. Solid lines: Calculated line shapes for infinite-
lifetime excitations. Dotted line in (c): Two-magnon inten-
sity calculated from Ref. [13]. Right vertical scale: Absolute
units for the magnetic contribution to the scattering intensity
I(Q, ur) = (1+cos P)8 (q, ur) + sin $8 '(q, a), where 8(q, u)
is normalized so that J 8(q, u)W = f 8(q, a)W = 8(q)

q ( ~/2.
Figure 2 shows the bulk of our data characterizing the

low temperature magnetic excitations in NENP. The two
peaks at q = vr lose intensity and merge to a single peak
for q & 0.9'. For q ( 0.5' the intensity loss for de-
creasing q is more rapid, until a peak can no longer be
discerned for q ( 0.37r. Comparing the typical resolu-
tion ellipsoid [19] shown in Fig. 2 to the peak widths, it
appears that the peaks are resolution limited. Such reso-
nant modes can be characterized by a dispersion relation
~i II(q) and structure factors 8R(q) = 8'(q) = 8R (q)
and 8&II (q) = 8R (q), in terms of which their contribu-

q) = +~i
II

+ vz sin q+ Ai
II

cos2 —. (3)

The solid lines in Figs. 1 and 2 are the result of a global fit
of Eq. (3) to all our data. Apart from the parameters in

u(q), only 8R' (q) and a flat background were varied for
each constant-Q scan [21]. The good overall agreement
between model and data (yz = 2.6) indicates that Eq.
(3) provides an adequate description of the dispersion
relation for q ) 0.3vr, and that the broadening of the
peaks is a resolution effect. To set a lower limit for the
lifetime ~ of these modes, we replaced the b functions in

Eq. (2) by Gaussians with full width at half maximum
1/w, and determined the experimental lower limit on 7

as the value at which the reduced g2 increases by 30%.
In this way we found w(q)r ) 10 for 0.37r ( q ( m.

The dispersion relation extracted from this analysis is
shown in Fig. 3(a). Alternatively we show data points
obtained by fitting resolution-corrected line shapes based
on Eq. (3) to each constant-Q scan. The fact that these
points cluster about the dispersion relation proves that
our analysis is not biased by the choice of Eq. (3). Apart
from displaying the Haldane gap, the dispersion relation

x 0.3

3

0

FIG. 2. Normalized magnetic scattering intensity from NENP at T = 0.3 K. Solid lines: Calculated intensity profiles for
infinite-lifetime excitations based on the dispersion relation shown with a dashed line [Eq. (3)]. Throughout we use circles,
squares, and triangles for data from configurations A, B, and C, respectively. The ellipsoid is FWHM of the resolution for
q = 0.5'. Data at q = 0.975vr, 0.857r, and 0.25vr have been omitted for clarity.
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FIG. 3. (a) Circles, triangles, squares, and solid lines: Ex-

perimental dispersion relation tu(q) of long-lived modes in
NENP. Error bars are smaller than the symbol size. Dot-
dashed line: Lower edge of corresponding two-magnon con-
tinuum. Crosses: QMC results [12] sealed by J = 4.1
meV. (b) Instantaneous spin correlation function 8 'II(q).
Crosses: Monte Carlo results [30). Dashed lines: Square-root
Lorentzians with g = 8.5 and 4.2. Solid lines: Single mode
approximation based on u(q). In both (a) and (b), open and
solid symbols for q ) 0.9~ correspond to polarizations per-
pendicular and parallel to the chain.

is anomalous in having a bandwidth of 11 meV which
is 1.4 times the prediction of classical spin wave theory,
2JS = 8 meV. For comparison the highest energy reso-
nant mode in the 8 = 1/2 case occurs at n/2 times 2JS.
The most interesting characteristic of u~

II (q), however, is
the asymmetry of the dispersion relation about q = 7r/2.
For conventional Neel antiferromagnets the unit cell is
doubled and q = 7r/2 is a point on the Brillouin zone
boundary of high symmetry for spin wave dispersion re-
lations. From Fig. 3(a) this is clearly not the case for
NENP. We conclude that the ground state of this mate-
rial retains the full translational symmetry of the lattice.

Although we do not wish to put undue emphasis on
the functional form of the dispersion relation used in
our analysis [Eq. (3)), it provides a convenient frame-
work within which to compare our data to existing theo-
ries. The optimal parameters obtained from our analysis
are A~ = 1.19(5) meV and AII = 2.40(5) meV, consis-
tent with previous experiments [4], and v = 9.7(1) meV,
A~ ——AII = 34(2) meV . Conventional spin wave theo-
ries yield dispersion relations identical to Eq. (3), with
the constraint Az

II
= +(AII —b,z) [22], clearly incon-

sistent with our results. More relevantly G6mez-Santos
[23] derived by a variational approach a dispersion rela-
tion for the isotropie S = 1 chain identical to Eq. (3),
but with parameters inconsistent with our experiment.

Numerical simulations on finite size chains have ob-
tained results consistent with ours [12, 24]. Figure 3(a)

also shows Takahashi's quantum Monte Carlo (QMC) re-
sult [12) for the lowest energy excited state (LEES) of the
isotropic S = 1 chain, scaled by J = 4.1 meV. Although
detailed comparison with data for NENP at q = x is not
possible, it appears that for q & 0.3z the LEES coincides
with the long-lived mode that we observe. For q & 0.3+
the LEES falls below the extrapolated dispersion rela-
tion, and follows closely the lower edge of the two-magnon
continuum generated from our measured dispersion rela-
tion [dash-dotted line in Fig. 3(a)].

In view of the dominant role played by the multi-
magnon continuum in the S = 1/2 case [25, 26] it
is important to understand its contribution to 8(q, ~)
for S = 1. Although we did not directly observe
multimagnon scattering, the total moment sum rule

(1/I) Q -8 (q) = S(S+ 1) allows us to set an up-
per bound on its contribution to 8(q, u). Figure 3(b)
shows our result for the structure factor of the resonant
mode, 8& (q), extracted by the global least squares anal-
ysis. Summing these data, we obtain 2.6(6) S(S+ 1)
implying that within error resonant excitations alone ex-
haust the sum rule. This excludes a large static ordered
moment in NENP at 0.3 K [27], and proves that mul-

timagnon excitations carry little spectral weight for the
S = 1 chain [24].

Because it is the Fourier transform of the instantaneous
spin correlation function {SgSg), 8~~(q) is central to the
characterization of the ground state. For the integer spin
isotropic [1] and the S = 1 anisotropic [28] cases, theory
predicts that (SEES/) ~ (—1)~l ~~2 exp( —E/() for E/( &&

1. This implies that 8 (q) cx (I+ [(q —vr)(] ) ~ for

(q —7r)( « 1. This square-root Lorentzian (SRL) [10,29],
shown as a dashed line in Fig. 3(b), is consistent with our
data for [q

—sr[ & 0.2m, but beyond this regime the SRL
decreases more slowly than 8(q) because near-neighbor
correlations are overestimated by the continuum theory.
The crosses show Monte Carlo results for a 64 spin chain
[30] which are in qualitative agreement with our data,
although detailed comparison near q = 7r is precluded by
the single ion anisotropy of NENP.

The results that 8(q, cu) 8~(q, u) and cu(q)7 && 1 for
all q with significant spectral density allow us to use the
SMA [11,25, 31] to relate 8 (q) to ~~, II(q):

8 (q) u)8 (q, u))~1

(u~~(q)
(4)

(1 —cos q),
2 ('8)/L
3 M~~(q) (5)

where {'8)/L is the ground state energy per spin. The
solid lines in Fig. 3(b) are a one-parameter fit using Eq.
(5) and our measured dispersion relation. This yields
(8)/JL = —1.5(4), indistinguishable from the value
—1.4 obtained by Monte Carlo simulation [30]. For q 7r

Eq. (5) becomes a SRL with (& II
= +i

II
~~'+ A~, ll/

resulting in values of 8.5(4) and 4.2(1) for the transverse
and parallel dynamic correlation lengths.
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In the low-q regime, the fact that we do not discern
a peak for q ( 0.3m is consistent with the intensity
predicted by the SMA, but leaves open the question of
whether or not the resonant mode survives within the
two-magnon continuum (Fig. 3). AfHeck and Weston [13]
have calculated the two-magnon contribution to S(q, u1)

in the q 0 limit for S = 1 chains using a Ginzburg-
Landau approach to treat the finite anisotropy appropri-
ate for NENP. With our measured parameters, this model
predicts a two-magnon contribution to the total moment
sum rule of 0.083 for [q[ & 0.3+, consistent with our con-
clusion that one-magnon modes dominate the fluctua-
tions. Upon convolution of Eq. (4.3) of Ref. [13] with
our experimental resolution function at q = 0.37' this
theory predicts the weak, broad peak shown magnified
10 times in Fig. 1(c). Although the integrated intensi-
ties of the measured resonant mode and the theoretical
two-magnon spectrum are comparable at this q, the latter
cannot be separated from the strong incoherent inelastic
nuclear scattering.

To put our results into context we mention that a di-
verse class of quantum systems that do not break trans-
lational symmetry in their ground states have excitations
that are well described by the SMA. These include super-
fluid He, the two-dimensional electron gas in the frac-
tional quantum Hall regime, and the bilinear-biquadratic
(AKLT) spin chain [11,32], although only for He do di-
rect measurements of the excitation spectrum exist. Our
results indicate that as anticipated [ll], the pure bilinear
chain also falls in this class. Recall that in 4He the roton
minimum in the dispersion relation results from short-
range correlations in the liquid. Analogously, but with
the important difference that 8~~(q = 0) = 0, the de-
crease in the excitation energy that occurs for q ( 7r/2
in NENP but not in the AKLT chain [ll] suggests the
closer proximity of the former system to Neel order which
would enforce vr periodicity in &u(q).
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