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Thermodynamic quantities in quasi-2D type-II superconductors exhibit characteristic scaling be-
havior for high fields in the critical region around H, 2(T). Using a nonperturbative approach to the
Ginzburg-Landau free energy functional, the scaling functions for the free energy, magnetization, en-
tropy, and speci6c heat are evaluated in a closed form. The experimental data for Bi&Sr2Ca2Cu30yp
are presented which are in agreement with the theoretical results.
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The properties of type-II systems have recently been
under intense study, particularly in connection with
high-temperature superconductors (HTS). A fundamen-
tal problem in this field is that of critical behavior arising
from thermal fluctuations. Several experiments point to
the importance of fluctuations in the thermodynamics of
HTS [1—6]. In a recent experiment, Welp et al. [3] ob-
served that the superconducting contribution to the mag-
netization and resistivity of YBapCu30p crystals displays
three-dimensional (3D) scaling behavior in the variable
[T —T,(H)]/(TH) Is around the critical temperature in
the general vicinity of the upper critical field H, (Tz). Li
and Suenaga [6] noticed that the magnetization of highly
anisotropic Bi2Sr2Ca2CusOtn crystals near critical tem-
perature can be described by the 2D version of the scal-
ing function in the variable [T —T,(H)]/(TH)tIz. The
scaling indicates that the problem of fluctuations near
H, 2(T) can be represented in terms of the Ginzburg-
Landau (GL) field theory on a degenerate manifold
spanned by the lowest Landau level (LLL) for Cooper
pairs (we call it the GL-LLL theory). The GL-LLL de-

scription of fluctuations near H, (Tz) is formally valid
if the (H, T) point lies above the H(T) line given by

H(T) = (1/3)Hcz(T) + (~8/3) H(T)Hcg(0)T/Tcp
where 8 « 1 is the Ginzburg fluctuation parameter (see
below). Below H(T) the interaction term in the GL the-
ory is larger than the cyclotron gap of Cooper pairs and
the fluctuations from excited Landau levels become sig-
nificant. The GL-LLL description is valid everywhere in
the critical region around H,2(T) except for the area of
size 8 « 1 surrounding [K = 0, T = T,o].

The scaling property of GL-LLL theory for a quasi-
2D superconductor implies that the free energy F(T, H)
near H, q(T) must be of the form F(T, H) = THf(At),
where f(At) is a scaling function of variable t = [T-
T,(H)] (/T H)i 12and A is a constant [7]. The function

f(x) is known only in the limit x » 1, where perturba-
tion theory can be used to account for the fluctuation
contribution to the free energy. Various extrapolation

schemes have been used in the past to reconstruct the
form of f(z) outside the perturbative regime (z » 1),
and, in particular, in the crossover region around x = 0
[H,2(T) line]. These schemes include the diagrammatic
approach, [8] Pade and Borel-Pade approximants to the
perturbation series [9], and possible connection with a
simple OD GL theory in zero field. Recently, a nonper-
turbative approach to this problem has been developed
in Ref. [10]. In this Letter we use this approach to solve
for the thermodynamics of quasi 2D type-II supercon-
ductors in the vortex phase and derive an explicit form
for f(x) After i.ntroducing the correct collective vari-
ables, the overall amplitude of the order parameter @(r)
and positions of vortices, we proceed to perform the in-
tegration over the overall amplitude exactly [10]. As a
result, the correlations among vortices affect thermody-
namics through interaction which can be thought of as
an analog of the Abrikosov parameter pA for arbitrary
configurations of vortices [10]. Such interaction depends
only weakly on vortex configurations, an example being
the well-known small difference between l3A for a trian-
gular and a square lattice. Neglecting the dependence
of the generalized Abrikosov parameter on vortex corre-
lations we find explicit closed form expressions for the
scaling functions f(z) for free energy, as well as for mag-
netization, entropy, and specific heat. Our theoretical
results are in very good agreement with the experimen-
tal magnetization data for Bi2SrzCazCusOtp obtained in
the high-field regime where the GL-LLL description and
corresponding scaling behavior are valid [5, 6].

For our purposes it suEces to study a 2D system. The
description of fluctuations in superconductors with weak
Josephson coupling between the layers is based on the
2D GL functional at all temperatures except in a narrow
interval near T„where the fluctuations have a 3D char-
acter. This temperature interval of 3D fluctuations AT
can be roughly estimated by comparison of the Josephson
coupling energy with the intralayer condensation energy.
This gives the condition (,(T) = s where (,(T) is the
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correlation length along the c axis (perpendicular to the
layers) and s is the efFective interlayer spacing. One ob-
tains AT —T,(2b(0)/szp~ where ( b(0) is the correlation
length along the layers (in the ab plane) extrapolated to
zero temperature, and p is the anisotropy ratio. For Bi-
based superconductors with anisotropy p as high as 55 in
the case of Bi2SrzCaCuzOs and 31 in BizSr2CazCusOip
[11] with (,b(0) = 20 A. and s = 20 A, the region of 2D-
like behavior of fluctuations covers practically all tem-
peratures of interest.

We consider the limit z )& 1 and ignore the fluctua-
tions of the magnetic field (this is an excellent approxi-
mation in ITS where r ~ 10z). The essential features of
the critical behavior are then described by the partition
function

'D@(r) exp — dr( a[@—(r)l —2b[4'(r)l )

where a = a(T) [1 —H/H, z(T)], a and b are the GL coef-
ficients, a(T) = a'(T —T,p), and the functional integral
is to be taken over the subspace 'Mp spanned by the LLL.
It is supposed that higher Landau levels are taken into
account by renormalization of the GL parameters a(T)
and b, and these parameters dier from the original ones
for the GL model for H = 0 due to contribution of higher

Landau levels. For H ) H(T) this contribution is small,
of order 8 and 0 for a(T) and b, respectively.

The confinement to the LLL eliminates gradients in
the plane perpendicular to H. This leads to the enhance-
ment of fluctuations near H, z(T) through a dimensional
reduction [12]: At the perturbative level the fluctuations
appear zero dimensional. The critical behavior of the
GL-LLL theory (1), however, is deeply nonperturbative
due to the constraint 4(r) c 'Rp. To study this behav-
ior we use the symmetric gauge to write @(r) in LLL
subspace as [10, 13]

@(r) = C (z —z, ) exp( —lzl2/4),

where z = (z+ iy)/l, l = Pp/2vrH, N = SH/Pp is

the number of vortices, and S is the total layer area.
Variables (z,) (positions of vortices) and 4 (overall am-

plitude) are the correct collective modes of the GL-LLL
theory (1). The partition function in Eq. (1) can now be
written in terms of these new modes. The crucial point is
that the integration over O in Eq. (1) can be carried out
exactly in the thermodynamic limit N ~ oo [10]. This
recovers the crossover to the low-T saddle point which
controls the thermodynamics in the critical region and
which is beyond the reach of perturbative expansions.
The integral in question is

d[4[ [4[ exp( —2n[ol —z[O[ ) oc y'N! exp[ —o. —ngn + N —Nsinh '(n/~N)],

where o.z + N » 1 is assumed. Note that [4[ arises from the Jacobian of the transformation implicit in Eq. (2)
[10]. This finally leads to the partition function

1
Z oc

N N
' (f ) lz, —z~[ exp[zNV —zNVgV +2 —Nsinh (V/v2)], (4)

where V((z, )) = gU((z, )) and

f"((z')) =
2 N

exp(-plzl'/4) lz —z'I" U((z.)) = f'/(f')"' g = ta'(/ps/2b)'i (5)

The partition function (4) describes the thermodynam-
ics of dense classical vortices. The important point is that
the Beld and temperature dependence enter through the
coupling constant g in front of the multiple-body config-
uration interaction U((z, )) = f2/(f4)i~ only This vor-.
tex interaction U is simply 1//PA, but with Abrikosov
parameter PA((z, )) evaluated for arbitrary configura-
tions of vortices.

Now we use the fact that major rearrangements of vor-
tices lead only to rather small changes in PA. For exam-
ple, as is well known, the difFerence in PA for a triangular
and (locally unstable) square lattice is only a few per-
cent. Only collapsed or exploded zeros, which are highly
improbable configurations, can change PA and U signif-
icantly. This is confirmed by evaluating the thermody-

namic average (U) in the perturbative limit g )) 1 where
one expects (U) to be smallest. The result is {U) = I/v 2
in this limit. Thus, over the full range of g, (U) changes
from 0.707 to 0.928, the latter corresponding to the tri-
angular lattice (g ~ —oo limit). We therefore expect
that simply replacing U in Eq. (5) by a z, -independent
value Up (= {U)) should be a very good approximation
for all temperatures and fields where the scaling itself
is valid. The essential physics is that the variation in
thermodynamic functions through the critical region is
caused primarily by the rapid change in [4[~; In our non-

perturbative approach this part of the problem is treated
exactly. The change in U is comparatively very slow and
is quantitatively less important. Uo should be chosen to
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interpolate smoothly between the two limits: Here we
simply use Up = 0.9 far below H,z(T), Up ~ 0.8 around
H,z(T), and Up = 0.7 far above H,z(T) [14]. After set-
ting U = Up the t-dependent part of Z can be found
easily. Using this approximation we finally obtain the
scaling functions for free energy density, magnetization,
entropy density, and specific heat:

TH sPp = f(x), x = At, A = a'(/ps/2b)'izUp,

f(x) = —-x + -xgxz + 2 + sinh (x/+2),
M(H, T) sgpH,'z

HT
~(H, T) P()

gHT A

C(H, T) z
——f"(x) = 1—

x +2

(6)

(7)

(8)

(9)

T,p —T' bH,'z
T' a'z /ps Uz

(10)

We note that both the scaling form of magnetization (or
entropy) and the existence of the crossing point (10) nat-
urally lead to the function f'(x) = —x+ gxz + 2. Thus
the existence of the crossing point in the scaling regime
is a direct consequence of the weak dependence of the
generalized Abrikosov parameter P~ (i.e. , the vortex in-
teraction U) on coordinates of vortices. The crossing
point T* lies in the region of strong (critical) fluctua-
tions, the right-hand side of Eq. (10) being the Ginzburg
fluctuation parameter 8 for quasi-2D superconductors.

The magnetization at the crossing point is

where H,'z ——~dH, z/dT~ at T = T,p. In deriving (7),
(8), and (9) from the free energy in Eq. (6) we have kept
only the leading derivatives. It is evident from the form of
scaling functions in Eqs. (6)—(9) that the critical behavior
of the GL-LLL model in 2D is diferent from the OD GL
model [15].

The comparison to experiments indicates that the
present form for f(x) is quite accurate (see below). This
approach, however, describes only the "smooth" ther-
modynamics and cannot be used to extract information
about the liquid-solid phase transition which was found
to take place at g = gM —7.5 [10]: For this transition
the dependence of U on z, is crucial. We note that it is
this weak dependence of the generalized P~ on z, which is
responsible for the absence of a strong phase transition
at the melting point (this is in agreement with experi-
mental observations: Up to now singular behavior at the
melting point was not observed in any thermodynamic
quantity) .

The thermodynamic functions for magnetization and
entropy given in Eqs. (6)—(9) have the following remark-
able property: Both M(H, T) and o(H, T) are indepen-
dent of H at temperature T', i.e. , all M(T) or a(T)
curves for different H cross at the point T'.

M(T') = T'/sPp .

Thus the ratio M(T')/T' gives direct information on the
effective interlayer spacing s. We note that this param-
eter coincides with the distance between layers given by
the crystal structure in compounds with one supercon-
ducting layer per unit cell. In Bi-based superconductors
there are two or three Cu02 layers per effective unit cell
and only in the case of their strong superconducting cou-
pling (in comparison with the intralayer condensation en-

ergy) they can be treated as one layer and the parameter
s coincides with the size of the effective unit cell in the c
direction. Otherwise the layers should be treated individ-

ually and the effective spacing s is given by the average
distance between CuOz layers.

Now we point out that the scaling approach describes
the crossing point for fields

H )H(T') ) H', -H' = H,z(T') = H,'z(T, z —T') .

(12)

For lower fields higher Landau levels are important. In
the low-field regime H « H, z (in the London region) the
contribution of the vortex fluctuations to the thermody-
namics was described in [16]. In the London region the
amplitude of the order parameter is constant while posi-
tions of vortices z; fluctuate. The H dependence of the
magnetization is logarithmic in this region. The slope
dM/din H depends on T and becomes zero at T = T',
where T' is again given by Eq. (10), but now with Upz

replaced by 1/2. Thus the crossing point T' in M vs T
curves at different fields H exists in the London region of
the vortex state as well, i.e., for H « H'. Noting that
such a crossing is absent in the mean-field approach, we
conclude that the existence of the crossing point T' is a
general consequence of fluctuations in the vortex state.
Formation of the crossing point is caused by the entropy
associated with fluctuations of vortices; in the low-field
regime the fluctuations of vortex positions are important
while in the high-field regime the amplitude fluctuations
give the main contribution.

We now use our results to understand the experi-
mental data on magnetization for highly c-axis oriented
BizSrzCazCusOip with the magnetic field parallel to the
c axis [5]. In the scaling regime we use the expression

M 1= —[1 —r —h+ g(1 —r —Ii)z + 4g]

(13)
r = (T —T')/(T, p

—T*), Ii = H/H',

which follows from Eq. (7). The values T* = 108.1 K and
4vrM' = —2.67 G were taken directly from the data for
the crossing point. Two other parameters T,o and H,'2
were obtained by the least-squares minimization method
using Eqs. (13) and the experimental data for temper-
atures between 107 and 120 K and fields 5 ) H ) 1
T where the scaling approach works well. From this fit
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FIG. 1. 2D scaling of magnetization data for Bi2SrqCa2-
Cu30ip in various magnetic fields parallel to the c axis. The
theoretical curve is obtained from scaling function f'(x) given
by Eq. (7).
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