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Nonlinear Response of a Dissipative Bloch Particle in an Oscillating Field
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We study the Caldeira-Leggett model of a particle coupled to a heat bath moving in a periodic cosine
potential. In the limit of small viscosity we obtain an integral equation for the nonlinear response of the
system to a constant or a slowly oscillating field. The equation is derived by a resummation of the
infinite series expansion in the strength of the cosine potential. When solved via a self-consistent approx-
imation it gives an analytic expression for the response function. Applications to Josephson junctions
driven by a low-frequency source are discussed.

PACS numbers: 74.50.+r, 03.65.—w, 05.40.+j, 74.40.+k

We study the nonlinear response of a dissipative quan-
tum particle moving in a periodic cosine potential in

which the dissipation is modeled by coupling the particle
to a boson bath with a general dissipation spectrum J(to),
the so-called Caldeira-Leggett model [I]. This model has
been extensively studied in the past decade as it is direct-
ly related to the macroscopic quantum behavior of an ul-

trasmall Josephson junction and also to other problems
such as the diffusion of a heavy particle in a solid or elec-
trons in a superlattice [2-6]. For a recent review and

summary, see [7]. Our results should be particularly
relevant to experiments in ultrasmall Josephson tunnel
junctions or junction arrays driven by a low-frequency
current source (e.g. , a microwave).

In general as the effective mass of a macroscopic de-

gree of freedom becomes small, the quantum nature of
the universe manifests itself. The resulting behavior is

complicated by the presence of dissipation, i.e., the inevit-
able coupling of the macroscopic degree of freedom to its
environment. A suitable description of this coupling is,
both conceptually and technically, more problematic in

the quantum domain than in the classical one [7,8]. One
such problem in our model arises from the fact that quan-
tum mechanically the dissipation (and the external force
when present) must be described via some Hamiltonian
which destroys in general the periodicity of the bare sys-
tern. The question then arises of whether the band prop-
erties due to the Bloch theorem will also be lost. This has
been extensively discussed in the literature and there
seems to be agreement that with proper modeling of the
environment some of the Bloch properties of the system
will still be present. In fact, most of the approaches to
this problem are based on this assumption. Some of these
inake use of driven quasiclassical Langevin equations and
explicitly utilize the band structures of the Bloch particle.
Others introduce statistical methods such as the master
equation for incoherent Zener tunnelings at the Brillouin
zone boundaries. Still another approach is based on the
tight-binding picture and incoherent tunnelings between
adjoining sites. Despite the difficulties in these studies

with the Bloch theorem, multiband eA'ects, and coher-
ences between tunnelings, they all yield observable pre-
dictions of a Coulomb blockade which leads to negative
differential resistances in certain regimes [4,5,7,9-11].

In the present work the band picture is not used explic-
itly. We therefore avoid the above issues concerning the
Bloch theorem. Nevertheless, the Bloch properties of the
particle appear quite naturally at the end. Our approach
starts from the many-body density matrix of the whole

system [5,6, 12,13], with the initial state of the particle lo-
calized at the origin. After tracing out of the environ-
mental degrees of freedom, a real-time Wigner distribu-
tion [6,12] for the particle alone is obtained in terms of a
series expansion in Vo (the strength of the cosine poten-
tial). This approach also applies for the tight-binding
model, where 5 (the tunneling matrix element between
two nearest minima) is the appropriate expansion param-
eter (cf. [5] and below).

The main result of this Letter is to show explicitly how
the resummation of the series can be carried out analyti-
cal/y in the small-viscosity limit which includes regimes
that are not semiclassical. This extends the results of
[13], where only stationary fields were considered: The
present results also describe the time-dependent response
of the system to an oscillating driving force such as a mi-
crowave, and this we believe can have useful applications
for experiments. It is achieved as in [13] by first trans-
forming the problem into an integral equation and then
solving the equation via a self-consistent approximation.
Previous results of negative diAerential resistance are
recovered in a more general way.

%e consider a particle with a Hamiltonian

H = + Vpcos(kpx) —F(t)x
p'
2m

coupled to a boson bath with a dissipation spectrum
J(co). Starting at t = —~ with the bath in equilibrium
and the system localized at the origin, one finds for the
response of the particle [12,13]
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The functions Fp, F l, and F2 are
we further approximate

(2)

Fp(t) = dzg(t —z)F(z),
2n —

l k2g 2n

F) = Q —sin g Jtjg(tj tk)—1 . o

k =1 ~ 2 j~k+ I

j(. 2 2n

p g p pkC(tj —t )
j,k =1

(3)

(4)

g(t) =8(t) [1 —exp( —rtt/m)]/rt, (6)

where in the Ohmic damping limit J(t()) =rtt() (we shall

return to the more general case below),

ZPk Fp(tk ) =ZPkF(z )tk,

where the "rescaled force" F(l) is defined by

dF(t) = dz g(t —z)F(z) . (9)
dt& -"

Setting t/(m/kpVp)'J t, F/kpVp F, kT/Vp T,
rt/(mk()Vp) 'J

g, and hkp/2(mVp) '
Q~, where O~

is the dimensionless form of Akp/2m (a measure of quan-

tum eA'ects in frequency) we introduce the following

functions and operators (see [13]):

C(t) = t't J(a)) ig(co) i
coth [1 costp—t]

4 2z' 2

=ka T ~
I
t

I

—mg(l t
I )]/n+ o(n) ~ (7)

1 2tryp(1' =4
( 2)

l/2

exp
(2

2T(i —y')

with g(t()) being the Fourier transform of g(t) [cf. below

(22)]. Note that the expression for the corresponding
tight-binding model [5], though appearing similar in

structure, is rather different in details. Mathematically it

corresponds to roughly m 0 and rt I/rt of the con-

tinuous model; see [12,13]. Our method of solution is,

however, not applicable to it. They work in different pa-

rameter regimes.
The coeScients of Vp in (2) consist of multidimension-

al integrals over past times. Following [13] we divide

[t),t2, . . . , t2, (, tq„] into irreduc—ible neutral charge clus-

ters according to their "charges" [Jtjj (imagine a one-

dimensional Coulomb system, viewing each tj as the posi-

tion of a particle carrying charge pj). In the limit of
small rt, the intercluster distances are very large (-m/rt)
while the size of a neutral charge cluster becomes nearly

independent of the viscosity (-Jm/kT ). Moreover, the

expressions for g(t) and C(t) at rt 0 reduce to

g(t) =9(t)t/m and C(t) =kttTt /2m Note . that at

t 0 quantum correction comes in, giving an asymptotic
behavior of C(t) of the form C(t)-rtt InPh/t; cf. also

[3]. This correction can, however, be quite safely ignored

as g is small here. For a single cluster centered at t =z,

y, «, »=k«)yp«, r), t =1,2,

where

(io)

Q;g =S; Z (d(+ +dg
—2)

20q
(i 2)

with S((x) =cos(x) and S2(x) =sin(x), Z=—0.80 is a nu-

merical factor, and d~ are lattice displacement opera-
tors, dt p(g) =p(g+' Qv). These operators can be con-

veniently handled via Fourier transform and using the

techniques developed in [13] the equivalent "driving
force" arising from summing over a single irreducible
cluster centered at z reads

ft) &(z ) =y) (F(z ),0) . (i 3)

%e now briefly outline the resummation over the neu-

tral clusters. Going from left to right the distance

z, —z, = z„between an upper cluster (cluster a) and a
lower cluster (cluster a') is in general of the order I/rt,
which is much larger than the intracluster distances of
the order T ' . The relevant functions connecting the

two parts can then be approximated by

~t j( ) g j( ) J( ') g ((() ~ t j(a) j(a)'
J (a) J (a) J (a)~J (a') ,j(a'),j(a)

r

j( ) j( ') j( ) j( ') J( ) J( ) g j( ') j( ')

where pj, )
and tj„) are the "charges" and "positions" in the ath cluster. The two-cluster contribution to the driving

force then has the form

f(2)(z2) = fO T'2 2

dz)
t g y;(F(z)),0)Q;(&)y)(F(z2) —&g(z2)),g(z2())
i=1 4 =F~.i i

(i4)

The general procedure for the resummation of a multicluster term is as follows. In step I we go from the bottom to the
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top with fixed cluster lengths and intercluster distances. We first integrate over the intracluster degrees of freedom of
the lowest cluster (cluster 1). It modifies the structures of other clusters. We then integrate over the second lowest one
(cluster 2) with the modification from cluster 1. Both will modify the remaining clusters. But the effect of cluster 1 be-
comes indirect after adding the effect of cluster 2. [This is true only when g(t) is an exponential function. It is precisely
the property that allows us to express the final result in terms of an integral equation. ] This procedure can be continued
to the top. In step II, we perform the resummation over Vo for each cluster one by one from the top to the bottom. The
final structure can be expressed in terms of an integral equation. Introduce an auxiliary function y((, y:t, t') satisfying
the equation

y((, y t, t') =g —gy;(g, y)Q;(g'), dzy(F(z) —('g(z —t'),g(z —t'):t, z)~& F«&.
i 1

Then the resummation yields the response

(i 5)

(k0x(t)) = dt'y(F(t'), P:t, t') . (i 6)

We emphasize that the result of (15) and (16) is obtained from a complete resummation over the formally exact expan-
sion in V0. It therefore holds quite generally in the entire parameter space of T, F, and Qv provided Qv/tl»1,
T/rt » 1, and T[F/(dF/dt)] » I (all quantities dimensionless).

Solving (15) appears rather difficu1t and we next discuss a self-consistent approximation. Write

2

y(g, y:t, t') =g gy;(g—, y)A;

with A; (t, t ': [F(z )]) satisfying

A;(t, t':[F(z)])=g(t —t')6; ~+Q;(g') g, dz yj(F(z) —g'g(z —t'), g(z —t'):t, z)AJ(t, z:[F(z)])
gJ g

J
&'-- F&r')

We now approximate the right-hand side by bringing AJ out of the integral at z =t'. (18) can then be solved self-
consistently,

(1+C22)g(t t')—
(I + C| i ) (1+C22) —C|2C2]

C2~g(t t'—)—
(1+Cl ))(1+C22) C|2C21

where the coefficients are

(2P)

C; =„,dz Q;(()y (F(z) —&g(z —t'), g(z —t'):t, z)~& Ft, 1

The above result can be generalized to more general dissipations. For an arbitrary J(zo) the Fourier transform of g(t)
is [12]

1 I
" dao' 2J(t0')/z0'

J ~ 2n ( ytoip+) —
zo

(22)

JI t0J(c0) ig(t0) i
'.

0
(23)

This concludes our general analysis. Upon substituting
an arbitrary external force F(t), it yields the analytical

Though the mapping between summing over the clusters
and solving the integral equation is rigorous only when

g(t) is an exponential function, the integral equation
(thus the self-consistent solution) may still be a good ap-
proximation since the distances between the clusters are
large. The equation remains formally the same, but one
may need to replace the dimensionless temperature by an
effective one,

t
expression for the response. The result has many in-
teresting features and more detailed studies will be
presented elsewhere.

For a constant force the dominant contribution comes
from t —t' ~. In this case, the self consistenc-y is ex-
act. Figure 1 plots as an example the resulting stationary
velocities for selected parameters, which illustrate nicely
the effect of the Bloch states. For a free particle (i.e., no
cosine potential) driven by the external force, the peaks
(located at Qv/2 and 3Qv/2) in the curves correspond to
having terminal wave vectors at the Brillouin zone boun-
daries. Thus these peaks are related to the Bragg scatter-
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FIG. 1. The curves of the nonlinear stationary velocity vs the
rescaled force for diA'erent temperature T at Aq =4.0 and

g 0.

ing with the periodic potential [13]. Increase in F could
then lead the system to either go up to the next band via
Zener tunnelings or remain at the lower band with a
lower velocity. In a realistic situation one needs to add
finite temperature and quantum coherence eA'ects. It is

these effects which are treated here, in the context of the
Caldeira-Leggett model in a unified way. Note that in

Fig. 1 there are multisegments of negative diA'erential re-

gimes. This means that at low temperatures higher bands
also play roles. But it is very sensitive to the temperature
and the viscosity.

We close with a brief discussion of applications to a

small Josephson junction. The intrinsic parameters of the
latter are m =(h/2e) C, ko=l, and Vo=EJ =l, h/2e
Thus the dimensionless quantities read (assuming the
usual resistively shunted junction model; cf. below)
F=1/I„r) =(h/2el, CR ) ' and Q~ (2Er/EJ) '

where Ep represents the Coulomb energy of a single elec-
tron sitting at the junction. The curves of stationary ve-

locity versus external force correspond to the full I-V
curve in a current bias setup. A semiquantitative fit of
our theory with experiment [14] was found in [13]. Fi-
nally, due to the pure harmonicity of the environments
our result should be particularly useful when the eA'ects

of leads or other electromagnetic couplings are dominant
[Is].
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