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Self-Organized Pinning and Interface Growth in a Random Medium
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A new class of interface growth models is proposed, where global equilibration of the driving force
is achieved between each local deposition. Two such models are studied numerically, and it is seen
that roughness can occur with higher exponents than in situations where global equilibration of the
driving force is not established. In particular, we have found a new universality class of growth
models which in one dimension gives self-affine interfaces with roughness exponent g = 0.63 6 0.02.

PACS numbers: 68.35.Fx, 05.70.Ln, 47.55.Mh, 68.45.Gd

There has recently been much interest in nonequi-
librium growth models and their dynamic universality
classes. These studies may have a number of practical
applications, e.g. , in chemical vapor deposition [1], elec-
trochemical deposition [2], molecular beam epitaxy [3],
growth of bacteria colonies [4], and in fluid invasion of
porous media [5—7). Theoretical studies have fallen into
two classes. The first one treats nonlocal growth, appear-
ing, e.g. , in Laplacian growth phenomena, as diffusion
limited aggregation. In these the growth at a point is
influenced by the overall shape of the interface through
screening of the driving force, and the evolving surfaces
typically become self-similar. In nonlocal growth models
there is also the invasion percolation where the segments
of the interface with overall minimum resistance always
propagate [8]. The other class of models treats growth
that is governed completely by local conditions that pre-
vent the developing interface from developing overhangs.

As a scholastic example of the local class of models Kim
and Kosterlitz [9] introduced a simple discrete model of
a growing interface. In this model the growth process is
simulated by randomly choosing a site and allowing the
interface to grow one unit if all slopes remain small (e.g. ,
& 1). If this condition is not fulfilled a new site is chosen
randomly. In the long-wavelength limit this process can
be described by the Kardar-Parisi-Zhang (KPZ) equation
[10]

dh A (dh'i—= vugh+ —
i

—
i +r1(x, t),

dt 2 (dz)
where (tl(z, t)ri(x', t')) = I'b(z —x')b(t —t'). The re-
sults of this algorithm are the well-known scalings [11]
for the ensemble averaged width tu of the interface,
m2 = ((h —(h))2) oc L ~f(ti~'/L) with y = 1/2 as the
roughness exponent of the saturated interface and with

P = y/z = 1/3 describing the transient roughening. Ex-
perimentally determined y for one-dimensional interfaces
ranges from y = 0.55+0.06 in electrochemical deposition
[2], y = 0.78 +0.07 in growth of bacterial colonies [4], to
a y of 0.63+0.04 ([7]), 0.73+0.03 ([5]), and —0.81 ([6])
measured for Buid invasion of porous media. In all ex-
periments the measured y are above the one predicted by

the KPZ universality class. And although y = 0.55+0.06
in electrochemical deposition is within the range of the
KPZ prediction, the measured dynamics of the surface
growth in Ref. [2] are much faster than that predicted
by KPZ.

It is known that the type of noise plays a big role in the
growth of an interface. If the noise is changed either to a
spatially or a temporally power-law-correlated noise [12]
or to an uncorrelated but non-Gaussian (i.e. , power law)
distribution [13) one observes different exponents. How-

ever, there is no reason to assume such power laws in the
medium where the interface propagates. Thus it would
be much more satisfactory if we could find dynamical
reasons for obtaining the measured nontrivial exponents.

The fact that the growth behavior is influenced by the
type of noise rI has been further investigated by Parisi
[14], who considers the equation

dh A (dh)—= vugh+ —
~

—
~ +g(z, h),

dt 2 (dz) (2)

where (ri(x, h)rl(z, h)) = I'b(x —x')b'(h —h'). This form
of noise is physically appealing because, e.g. , liquid pen-
etrating a porous medium is influenced by a local resis-
tance which does not change explicitly with time, but
only with location (z, h). The result from simulations

[14] with the above equation is that roughening occurs
much faster, with dynamical exponent P = 0.7 ~ 0.8,
reHecting that part of the interface gets stuck in regions
with large resistance.

We present here another approach, in which the pin-
ning force on a given site is local (as in Parisi's model),
but where the growth at a given time occurs at the site
where the pinning force is minimal (in analogy with in-

vasion percolation [8]). However, at each time step, we
only consider sites where growth is indeed allowed by the
constraint of small local slopes, as in the Kosterlitz-Kim
model.

In the (one-dimensional) version of this algorithm we
have an interface h(x) = h(x, t) defined on a discrete
chain x = 1, 2, 3, . . . , L as well as a string of random
Gaussian distributed uncorrelated local pinning forces
q(x, h). We use periodic boundary conditions. The
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chain is updated by finding the site with the smallest
pinning force il(x, ti) among the sites that are allowed
to grow without breaking the Kosterlitz-Kim conditions
[[h(x) +1 —h(x —1)[ & 1 and [h(x)+1 —h(x+1)[ & 1].
On this site one unit is added to h and a new random
noise g between 0 and 1 is associated to the site. In the
following we refer to this as model A.
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FIG. 1. Model A. (a) Typical snapshots of interfaces at

two configurations at saturation. The dark areas show the
activity between the respective stages. (b) Saturated width as
a function of system size L for periodic boundary conditions,
sampled at saturation. (c) Width as a function of time t
Time is measured from flat state, in units of increased heights
per site. The dashed line has slope 1.

Figure 1(a) displays a typical configuration of the
string at the saturated state. The darkest areas show

the latest activity of the moving interface. One observes

a nonhomogeneous distribution of activity. From calcu-

lations of the saturated width w(L) for various system
sizes L [see Fig. 1(b)] we find a static roughness expo-
nent y = 1.00 +0.01. Figure 1(c) shows how the width iit

grows with time. We see two regimes, one at short times
before global comparisons of pinning becomes important,
and one where "self-organized pinning" dominates. The
latter regime has width iii oc t~ with P = 0.95 6 0.05.
This value is within the error bars from what is expected
from Galilean invariance (i.e. , )(+ y/P = 2). Also we

find that in the time interval where P —0.95 6 0.05 the
skewnes s = ((h —(h))s)/((h —(h))z)s~2 takes a constant
value of about 0.6. For comparison the KPZ predicts a
skewness of 0.29 in the transient regime [15]. After about
1000 time steps per site the string saturates and the skew-

ness vanishes for the finite system of I = 2048. It may
also be noted that an investigation of higher moments

of the Fourier spectra [fq(k) = ((hi, h q)«2)i«, where
h~ is the Fourier transform of h(x) and () denotes en-
semble average] revealed that for all qi, qz = 1, 2, . . . , 10,
fq, (k)/fq, (k) is independent on k at all times, both in
the transient and at saturation. Thus there is no multi-
scaling in model A.

We conclude that a model-A interface is rough with
the "trivial" exponents P = 1 and y = 1, indicating that
it in fact shows self-similarity (like invasion percolation
without any constraint). We also noticed that the break-
ing of the ti —+ —ti symmetry in the dynamics shows up
in the transient regime through a significant and nearly
constant skewness.

We now consider a different modification of the inva-
sion percolation approach, where the constraint on the
slopes acts after the least pinned site is moved. Physically
this may be realized in situations where the local pinning
force is reduced by a local slope. In the one-dimensional
version of such an algorithm we consider a discrete inter-
face h(x) defined on a discrete chain x = 1, 2, 3, . . . , L,
and a string of Gaussian distributed random uncorrelated
local pinning forces i)(x, ti). We use periodic boundary
conditions. The chain is updated by finding the site
with the smallest pinning force rI(x, h) among all sites.
On this site one unit is added to h. Then neighboring
sites are adjusted upwards (h —+ h + 1) until all slopes

[h(y) —h(y —1)[ & 1. New random noise i) C [0, 1] is as-
signed to all adjusted sites. We will refer to this approach
as model B.

Figure 2(a) displays typical configurations at satura-
tion. The darkest areas show the latest activity of the
moving interface. One observes a highly nonhomoge-
neous distribution of activity. Notice that according to
the rule 8 there will be a variable amount of sites that
are adjusted for each finding of a new minimum of q(x, h)
to propagate. Thus one might consider the distribution
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FIG. 2. Model B. (a) Typical snapshots of interfaces for
two con6gurations at saturation. The dark areas show the
activity between the respective stages. (b) Saturated width
as function of system size I (c) Width as .a function of time.
Time is measured from Hat state, in units of increased heights
per site. The dashed line has slope 1.

of these "avalanches" sampled at saturation. It turns out
that these avalanches have a characteristic size (average
of about 4), and that there is an exponentially small prob-
ability for bigger avalanches. Figure 2(b) presents the
saturated width m(L) versus system size I. We observe
a static roughness exponent y = 0.63+0.02. From a plot
of the width of the string versus time [see Fig. 2(c)] we
see a regime before saturation where the width m (I t~

with P = 0.9+ 0.1. Thus in this case the Galilean invari-

ance is not fulfilled. Investigation of the skewness shows

a steady decrease during the full transient, approaching
zero at saturation. Calculations of moments of Fourier
spectra during both transient and at saturation show that
there is no multiscaling.

Model B demonstrates that systems with global equili-
bration of pinning forces can give interfaces that are self-

affine but not self-similar. It is important to understand
that neither of the presented models needs any fine tun-

ing. They automatically develop into a "critical" state,
for model B with the new and interesting roughness ex-
ponent y = 0.63 + 0.02. It is in fact interesting that the
exponent y = 0.63 6 0.04 was measured in Ref. [7] for
ink propagation in a 20 cm strip of paper.

In order to understand how the exponent g = 0.63+
0.02 can appear, consider Ref. [7] where wetting invasion

in paper is modeled by wetting invasion in a percolating
network. When the density p of inert sites in the net-
work is fine tuned to the critical density p, of directed
percolation, the propagating interface stops along a di-

rected percolating string and becomes self-affine with a
roughness exponent y = 0.633 6 0.001. The global com-
parison of pinning forces in model B gives a dynamical
reason for such fine tuning. Thus the argument in Ref.

[7] suggests that the y = 0.63 exponent of model B can be
understood from the scaling of the transverse correlation
length Q. oci p —p, i

with the parallel correlation
length (ii oc] p —p, ]

'~s for a directed percolating string

on a close to critical network: Q oc ( ' = (1.P97/1. 733 P 633
II ll

For exponents of directed percolation see Ref. [16].
It is stressed, however, that the particular model pre-

sented in Ref. [7] has a dynamical exponent P = 0.70 +
0.05 which is difFerent from P of model B. Thus the dif-

ference between the propagation rules of model B and of
that of Ref. [7] leads to fundamentally different large-
scale dynamical behaviors.

Finally we would like to stress the following.

(1) Both the presented models show exponents which
are bigger than that of the corresponding local rules. For
model A this is seen by comparing with the Kosterlitz-
Kim deposition rule (which has KPZ behavior). For
model B we compare with a model where a site x =
1, 2, . . . , L is chosen randomly (equiprobable) for a forced
move h(x) ~ h(x) + 1. Then neighbors are adjusted up-
wards until all slopes ( 1. Simulations with this model
give g = 0.51 + 0.01 and P = 0.33 6 0.01, thereby indi-

cating that this local rule also is in the KPZ universality
class, as is expected from its symmetries. Modifications
of this local rule by choosing the site x = 1, 2, . . . , L with
a chance proportional to a local q(x, h) c [0, 1] does not
alter the KPZ behavior.

(2) The behavior of the interface roughening can be
very sensitive to whether the constraint of the slopes acts
before (model A) or after (model B) the motion takes
place. Nearly all experiments with self-afBne structures
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have y exponents in between the ones predicted by these
two rules.

(3) There are severe limitations on the applicability
of the presented growth models. First of all, they sim-

plify the global equilibrium by assuming that the chance
to advance only depends on pinning forces, but is com-
pletely independent of the overall shape of the interface.
In this way they will not apply to situations where screen-
ing can occur (e.g. , where the Mullins-Serkerka instabil-
ity [17] is important). Second, as they assume that pin-
ning forces are compared globally before movement takes
place, the models are valid only for experimental situa-
tions where the time to decide which site advances next is
much smaller than the time of the actual movement. If,
in reverse, one can only compare over a smaH restricted
region of neighbors, then on large scales the behavior will

be governed by local rules. Experiments might turn out
to be in the crossover regime between the conditions giv-

ing global equilibrium and the conditions of completely
local dynamics.

In conclusion, we have presented two especially sim-

ple members of a new class of growth models, which ex-
hibits self-affine scalings in the no-man's land between
the scale invariance observed in locally driven models and
the understanding of scale invariance as a signal of self-

organized criticality.
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