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Vorticity Model of Flow Driven by Purely Poloidal Currents
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The axisymmetric, incompressible, viscoresistive magnetohydrodynamic equations for purely poloidal
currents I(r,z) are transformed into three coupled scalar partial differential equations. These show that
finite al/Bz acts as a volumetric source offluid "torticity" which drives strong poloidal flows (jets).

PACS numbers: 52.80.Mg, 52.55.Ez, 52.75.Di, 98.60.Qs

E+Ux B=@J;
and Ampere's and Faraday's laws

VxB=p J, VxE= —aB/at.

(2)

(3)

Axisymmetric, purely poloidal current configurations
are found in a wide variety of conducting fluids and plas-
mas. Terrestrial examples include electric furnace [1]
and other industrial arcs [2], magnetoplasma-dynamic
(MPD) thrusters [3], z pinches [4], Marshall guns [5],
thyratrons [6], ignitrons, lightning, liquid metals [7], and

electrolytes. Although astrophysical plasmas are typical-
ly assumed to have both toroidal and poloidal currents,
there presumably exist situations ~here the current is pri-
marily poloidal (Refs. [8,9] are possible examples).

The most interesting property of these configurations, a
strong axial acceleration of fluid or plasma away from re-
gions of constricted current, was first discussed by
Maecker [10]. Axially directed fluid velocities of the or-
der of the Alfven velocity can result from this accelera-
tion, and in a high current arc most [11]of the electrical
energy input can go into translational kinetic energy,
rather than into thermal energy or radiation. The thrust
associated with this axial flow is the basis of the MPD
rocket engine, while in electric arc furnaces, viscous dissi-
pation of the arc kinetic energy heats the metal being
processed. Arc axial flow velocities have been measured

by Bowman [12] and by lrie and Barrault [13]. Reed
[14] graphically demonstrated the flow in liquid mercury.
Numerical magnetohydrodynamic (MHD) models for
electric arc furnaces have been discussed by McKelliget
and Szekely [15] and for MPD thrusters by La Pointe
[16].

We present here a new interpretation of this phe-
nomenon which shows that axial current inhomogeneity
acts as a volumetric source offi'uid "vorticity "Our mod-.

el assumes an incompressible, constant density fluid; this
is reasonable for liquids but is an oversimplification
for gases (compressibility considerations will alter the re
sponse to the vorticity generation mechanism discussed
here, but should not afl'ect the mechanism itself).

The relevant equations are the MHD equation of mo-
tion

p[aU/at+U VU] =JxB VP+pvV U, —

where p and v are, respectively, the mass density and ki-
nematic viscosity; the MHD Ohm's law

a2+,(rU.),az2

contains no driving force term, finite Uz is possible only in

the exceptional situations where (i) it has been imposed
as an initial condition at the initial time to (after which

Utt transiently decays), or (ii) it is imposed as a boundary
condition on some external bounding surface. Situation
(i) implies that the assumption of axisymmetry and pure-

ly poloidal currents was violated before to while (ii) im-

plies that the assumption is violated at some point in

space external to the bounding surface. We assume here
that neither of these exceptional situations occurs, in

which case Ug=0.
The most general poloidal velocity for a constant densi-

ty, incompressible fluid has the form

U = (2tr) 'Vtlt x V8, (5)

where tlt(r, z) is the fluid flux (streamline) function. For
this cylindrical geometry problem, it is useful to define
the "vorticity" It=r8 VxU so that

PxU =gag; (6)
note that g diff'ers by a factor of r from the usual
definition of vorticity. Equations (5) and (6) give the cy-
lindrical version of the well-known result that vorticity
acts as a source term in a Poisson-like equation for y,

r'V (r 'Vtlt) = —2trg. (7)
Because of axisymmetry, Ampere's law gives the current
density and magnetic field to be, respectively,

J=(2tr) 'VIxV8, B=po(2tr) 'IV8, (8)

where 1(r,z) is the total current linked by a circle of ra-
dius r with center at z. Comparison of Eqs. (5) and (8)
shows that I acts as the streamline for J.

We now assume there is a constriction of characteristic
radius r, in the current channel (e.g. , for a z-pinch

The electric field is E = —V4 —aA/at and we choose the
Coulomb gauge V A=O, i.e., A=VfxV8, where f is a
scalar function and we use cylindrical coordinates (r, 8,z)
so that V8=8/r.

Since the 8 component of Eq. (1),

a(rU, ) a 1 a
P +U V(rUtt) =pv r — (rU&)

at ar r ar
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sausage instability, r, would be the sausage "neck" ra-
dius, while for an arc r, would be the cathode radius);
this constriction implies the current is axially nonuni-
form, i.e., BI/BzeO W. e change to dimensionless (tilde)
variables by normalizing all lengths to r„magnetic fields
to the field B, =@01,/2trr„and velocities to the Alfven ve-
locity V~, =B,/(pop)' (here subscript c means evalu-
ated at r =r, on the current constriction). Thus, one ob-
tains

r =r,r, z=r, z, t =(r,/V~, )t,
y=V„r,'y, X=V~,g, I=I,I,

U = Vg, U, B=B,IVO, A =B,r,A,

P = (8, /po)P, @= V~, B,r, @ .

Dropping the tildes, the dimensionless equation of motion
becomes

V +P+ + V
U I I By .I I—gU —z +—Vq xVe=o,
2 2r 2tr Bt r2 R

—V4 —BA/Bt +U x IV O =S '&I x V O,

where

S =r, V„,t,/q =/ 0"I,/2~qp'"

(i 2)

is the magnetic Reynolds number (or Lundquist number,
since the characteristic velocity is V~, ). Equations (10)
and (12) are of the form

Vg+Qx VO=0, (i4)

which is the most general form of an axisymmetric par-
tial differential equation (PDE) involving a potential.
We can extract tvyo scalar PDE's from Eq. (14) by (i)
operating with VO Vx and (ii) taking the divergence.
Doing the former we see that Eq. (14) becomes
V (r Q) =0, which using Eqs. (10) and (7) gives

B I
Bt r

+V ~U =V
r 2

I I BI
, Vq —, . (is)

Rr r z

The left-hand side of Eq. (15) shows that the modified

vorticity quantity g/r is convected with the fluid. The
right-hand side shows that viscosity acts as a dissipative-
difI'usive term for the vorticity, and most importantly that
r BI /Bz acts as a volumetric source of vorticity. This
is in contrast to ordinary fluid mechanics where typically
there are no volumetric sources of vorticity, and instead
vorticity is generated by viscous drag at surfaces produc-

ing torques on the fluid. Because of the r coefficient
we see that the vorticity source is concentrated at small r.
For a uniform current density extending up to a radius r,
(e.g. , the cathode for an arc), r I is uniform in r for
r &r, and then falls oA as r for r) r, . Similarly the z

dependence will be strongest near the cathode and so we

conclude that the vorticity source is strongly localized to
be just above the face of the cathode.

Thus, we can imagine the term r Bl /Bz acts like a
set of paddlewheels located just above or below the con-
striction; these impart torques to the fluid which start cir-
culations having on-axis flows away from the constriction.
The fluid velocity field [second term on the left-hand side
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where

R =r Vg /y p I/21 /2tryp I/2

is the hydrodynamic Reynolds number. Similarly Ohm's
law becomes

! of Eq. (15)] convects vorticity away from the source, so
that a plume of vorticity develops and follows the fluid
streamlines. The vorticity plume is ultimately dissipated
by viscosity so that eventually the flow becomes irrota-
tional.

Likewise, operating on Eq. (12) with VO Vx gives

+V.
Bt r2

1
VI

Sr
(i 6)

Aside from missing a source term, this induction equation
appears formally identical to Eq. (15). The lack of a
source term in Eq. (16) indicates that the conversion of
current into vorticity cannot be run in reverse, i.e., an axi-
al nonuniformity in g does not drive a current. The ab-
sence of dynamo action is consistent with Cowling's [17]
antidynamo theorem that axisym metric flows cannot
drive steady currents. Besides the lack of a source term
in Eq. (16), Eqs. (15) and (16) also differ in that U is a
function of y which is a function of g, i.e., U =U(y(g)),
which gives the usual fluid convective nonlinearity in Eq.
(15). In contrast, for Eq. (16) we have to extend the
chain of dependence one step further, and consider U
=U(y(g(I))). Thus, more complicated types of non-
linearities could appear in Eq. (16) at high S.

We see that in the limit S ~, the quantity I/r con-
vects with (is frozen into) the fiuid. That this is the same
as the familiar concept that magnetic flux is frozen into
the fluid can be seen by considering a thin toroidal ring-
shaped element of fluid with major radius r and minor
cross-section area o.. Since the fluid is incompressible,
the ring volume 2nro stays constant as the ring convects
and distorts; thus a —r . The toroidal magnetic flux in

the ring is Bqa —I/r and so, using Eq. (16), is frozen
into the ring when 5 ~. Similarly, for large R and no
vorticity source, Eq. (15) becomes the Kelvin circulation
theorem for this geometry, since the fluid circulation
around the minor cross section of the ring is fU dl
=(VxU)ger —g/r .

Additional insight regarding Eq. (16) for large S can
be gained by considering the vector T=V(I/r ) x VO, —
which peaks at the outer edge of the current distribution.
For large S and in steady state, Eq. (16) gives
U. V(1/r ) = 0, which is equivalent to U x T = 0. Thus,



VOLUME 69, NUMBER 24 PH YSICAL REVIEW LETTERS 14 DECEM BER 1992

for large S, Eq. (16) shows that the edge of the current
distribution tends to line up with the velocity field,
whereas for small S the current distribution diffuses
across the velocity field.

Equations (7), (15), and (16) provide a complete sys-
tem of equations for the three scalar functions y, g, and

I; all that is required are temporal initial conditions and
spatial boundary conditions to define a specific problem.

Let us now consider pressure and electric potential,
which did not appear in Eqs. (7), (15), and (16) since
these quantities only appeared in the g-type term of Eq.
(14). We can obtain equations for P and 4 by taking the
divergence of the analogs of Eq. (14) in which case we

obtain equations of the form

Vzg= —VH VxQ (i7)

dS VP* =2m(~dl (gU —R 'Vg+zr I ),
where P* =P+U /2+I /2r, and

(19)

dS V@=2m(~dl (IU —S 'VI). (20)

Equations (7), (15), (16), (19), and (20) have been

with Neumann boundary conditions specified by Eq.
(14). Since Q depends only on y, g, and I, which were
obtained from the solutions of the coupled Eqs. (7), (15),
and (16), we see that in Eq. (17), the right-hand side can
simply be considered as a known source term for a
Poisson's equation. Equation (17) can be simplified, by
integrating it over the volume of a square minor cross-
section "torus, " in which case it becomes

„dSVg= —2tr(~dl Q, (I g)

where the line integral is the short (poloidal) way around
the torus. Thus, the respective equations for pressure and
potential are

numerically integrated for parameters relevant to a
steady-state high current arc using simultaneous over-
relaxation (SOR) on a 40x40 grid with upwind dif-
ferencing and a flux-preserving cylindrical differencing
scheme. Additionally, a spectral method (Fourier trans-
form in z) was used to solve the time-dependent Eqs. (7),
(15), and (16). Total arc current was 50 kA, cathode
current density was 4x 10 A/m, n =10 m, amu
=50, rt =10 0 m, and v=0.ol rt/po T. hese parameters
give r, =2xlo m, 8, =0.5 T, V~, =4.89x10 m/sec,
S=1.24, and R =124. For simplicity, spatially uniform
r) and v were used; spatial dependence (e.g., due to tem-
perature dependence) would result in R and S becoming
nonuniform, giving more realistic (i.e., sharper) arc boun-
daries than obtained here. Boundary conditions were
chosen to be no-slip (U=0) on the top (located at
z =10r,) and bottom (z =0) surfaces, and U„=Oat r =0.
The boundary conditions on the right-hand surface (i.e.,
at r = lor, ) were specified by assuming that the stream-
lines were horizontal on this surface, i.e., U, =0 and also
BU,/Br =0. The condition U, =0 on the right-hand side
gives the Neumann condition on y that Biir/Br =0, while
the condition BU, /Br =0 inserted into Eq. (7) gives
the Dirichlet condition on g that g,h, = —(2z) 'lB y/
Bz ]„h,. The evolution of the simpler SOR method quali-
tatively followed the time-dependent result, namely, g/r
was first generated above the cathode and then convected,
plumelike, with the flow along the fluid streamlines until
a steady state was obtained. Figure 1 shows the steady-
state SOR solution for g/r (shaded contours), with ve-
locity vectors superimposed; note the plume of g/r which
emanates from just above the cathode, and convects with
the fluid streamlines. Figure 2 shows the corresponding
solution for P (shaded contours), with the current
streamlines shown as solid lines.

Along the line r =0 (symmetry axis), regularity re-
quires 1=0, @=0, BP*/Br =0. Thus, along this axis Eq.
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FIG. 2. P (shaded contours) and current streamlines.
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(19) becomes the Bernoulli relation P+U /2 = const; cf.
Fig. 1. The situation is more complicated on the line
z =0 where there is an interplay between Bernoulli
eflects, viscous drag, and magnetic confining forces.
Equation (19) shows that on the line z =0, the viscous

drag term R 'tip/i)z depresses the pressure when t)2/t)z
is negative. Because the vorticity plume is a depression in

g [cf. Fig. I], rig/t]z is negative for z =0+, r ( I, causing
the peak pressure to be signtftcantly below the Bennett
pinch [18] value of unity. Furthermore, the no-slip
boundary condition (i.e., U, =0) associated with the ma-
terial surface at z =0 causes a boundary layer of reverse
(i.e., positive) vorticity just above z =0 (and also at just
below z =10), where the tangential fluid velocity abruptly
drops to zero. This also gives negative 8g/|iz on the line

z =0 producing further pressure depression extending to
radii beyond the plume. For a z pinch or astrophysical
jet where z =0 is simply a line of symmetry (i.e., no ma-
terial surface) and so finite U, is allowed, there is no re-
verse vorticity boundary layer and so only the plume-
induced pressure depression occurs.

This viscous drag-induced pressure depression below
the Bennett value is consistent with the unexpected obser-
vation in a high current arc experiment by Jones et al.
[19] that the peak pressure at r =0 on the cathode was

about half the Bennett value. [Jones et al. postulated
that the observed pressure reduction was caused by out-
ward centrifugal force due to "swirl" (i.e., finite Utt) par-
tially canceling the inward pinch pressure, but did not

present direct experimental evidence from their arc sup-

porting this postulate. ]
For the vorticity plume to be important, the axial ex-

tent of the problem must reasonably exceed r, so that the

plume has room to develop; similarly, R should be reason-

ably large so that the plume has a chance to travel some
distance before it is dissipated by viscosity. For large R
velocities of the order of V~, are attained.

A consequence of this acceleration of plasma away
from a current constriction is that a z pinch [4] undergo-

ing a sausage instability will have fluid jets expelling plas-
ma axially from the constricted region. Also, many astro-
physical phenomena involve poloidal currents [20] and

constrictions of the current channels ought to produce jets
here as well. Likely candidates are astrophysical jets
[21], which have strong axial flows and pinchlike confine-
ment [8], and the solar polar current proposed by Alfven

[20].
The purely toroidal magnetic-field configurations con-

sidered in this paper have zero magnetic helicity [22].
Poloidal flux surfaces do not exist so there is no Grad-
Shafranov equation (in contrast to the finite helicity, ax-
isymmetric, nondissipative flow model of Ref. [23]). Be-
cause magnetic helicity is a nearly conserved quantity,
the configurations considered here ~ill not spontaneously
develop poloidal magnetic fields; i.e., their helicity will

remain zero. However, if a configuration were created
with finite helicity (both toroidal and poloidal magnetic
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fields), it could relax [24] to a force-free state, whereupon
vortex generation and fluid flows would cease. How
much initial helicity is required for this to happen re-
mains to be seen, but it probably involves a competition
between boundary conditions trying to maintain the ini-

tial non-force-free state and internal nonaxisymmetric
dynamics trying to relax to a force-free state.
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