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Collapse of Minibands in Far-Infrared Irradiated Superlattices
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Quasienergy minibands in superlattices which interact with intense far-infrared laser radiation col-

lapse under conditions that are experimentally accessible. In particular, it is shown that the miniband

width becomes close to, but not identical to, zero if the ratio of the Bloch frequency and the laser fre-

quency approaches a zero of the Bessel function Jo.

PACS numbers: 73.20.0x, 73.40.6k

A periodic "superlattice" results when the alloy compo-
sition in a compound semiconductor such as Al, Gai-„As
is varied periodically along one dimension. The technique
of computer-controlled molecular-beam epitaxy allows

one to fabricate superlattices of high quality with a
period d that is typically of the order of 100 A. Such a
larger period in space implies that the allowed energy
"minibands" are very narrow; they can have a width of
only a few meV.

An essential feature of narrow-band transport is non-

linear response to an applied electric field. Indeed, the
seminal paper by Esaki and Tsu [1] on superlattice trans-

port was motivated by the possibility of nonlinear dc
transport due to Bloch oscillations. Some of the qualita-
tive predictions are now beginning to emerge [2-4].
Furthermore, models of nonlinear optical response have

been developed [5]; particularly important is the response
to strong electric ac fields in the nonperturbative regime.

To date, treatments of strong ac field response have

been carried out in the quasiclassical limit [6,7]. But in

physically realizable systems the driving frequency and/or
the harmonics created by the strong fields have frequen-
cies which exceed the miniband widths. Therefore, a
realistic model of a strongly driven superlattice must be
solved quantum mechanically. The purpose of this Letter
is to present a quantum-mechanical discussion of the non-

linear response of superlattices employing a method that
is valid for wide ranges of frequencies, field strengths, and

periods; the only assumption that will be made is that ex-
citations to higher mimbands can be neglected.

The approach that is used here to investigate the quan-
tum mechanics of laser-driven superlattices is particularly
well suited for the analysis of nonperturbative eA'ects of
strong ac fields. It emphasizes primarily the temporal
periodicity of the driving laser field, rather than the spa-
tial periodicity of the superlattice. Periodicity in time
leads to a formulation in terms of quasienergy eigenval-
ues, and due to the periodicity in space the quasienergies
for the allowed quantum states group together in mini-
bands.

A simple one-dimensional model potential VsL(x) al-
lows the numerical investigation of the behavior of
quasienergy minibands. It describes an array of N identi-
cal square quantum wells of width w that are separated

by rectangular barriers of width vvb and height v. The su-

perlattice period is d w„+ws, but the potential extends

only over a finite range: At x;„Nd/2 a—nd x,
„

+Nd/2 there are infinitely high walls which force the
wave functions to vanish at these boundaries. For the pa-
rameters w 100 A, ws 40 A, v 0.3 eV, a mass
trt 0.066m, (the effective electron mass in bulk GaAs),
and N 50 wells, the lowest-energy miniband extends
from 32.82 to 36.49 meV, and the first excited miniband
from 125.4 to 144.4 meV.

If a superlattice is exposed to far-infrared laser radia-
tion, the laser wavelength is much longer than the whole

sample and, therefore, does not introduce a new length
scale into the problem. Such a situation can be modeled

by the Hamiltonian (ft 1)

1 8H(x, t) + VsL(x) —eFx sinrot;
2trt

F denotes the strength and ro the frequency of the laser
field. The Hamiltonian (1) is periodic in time: H(x, t)

H(x, t +T), where T 2tt/ni is the length of an optical
cycle. From this property it follows that there is a com-
plete set of Floquet wave functions [8-11]as solutions of
the Schrodinger equation:

iit, (x,t) -exp( —iet)u, (x, t) (2)

with "quasienergies" e and T-periodic functions u,(x,t)
u, (x,t+T). Exactly as a quasimomentum is defined

only up to an integer multiple of the reciprocal-lattice
vector 2tr/d, a quasienergy can only be determined up to
an integer multiple of the photon energy 2tt/T ra.

There is also a Brillouin-zone scheme for quasienergies,
the width of one zone being ra. For vanishing field

strength, the quasienergies are identical to the energies of
the undriven system, modulo co. Generally speaking, the
Floquet states play the role of stationary states in periodi-
cally time-dependent quantum systems.

In the case under consideration, the restriction to far-
infrared frequencies also means that the photon energy m

is much smaller than the gap between the allowed energy
minibands; interband transitions require multiphoton pro-
cesses of very high order. Therefore, only the dynamics
in the lowest miniband will be studied in the following.

Before turning to the numerical results, an intuitive ar-
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gument will be useful. Assuming the energy-quasimo-
mentum relation E(k) =e —icos(kd)/2 for the un-
driven superlattice (e is the center of the unperturbed
energy band and 5 its width) and a homogeneous electric
field C(t) =Fsinmr, the group velocity of a wave packet
which is centered around k =ku at t =T/4 is given by

v(t) sin kud+ coscot
hd eFd (3)
2 M

Thus, the velocity averaged over one laser period is

v sin(kod) Jo (4)

E„s——cos, n =1, . . . ,N,nx
N+1

a quantum-mechanical calculation which neglects all
finite-size effects yields an approximate expression for the
quasienergies e„that originate from them [12]:

where Jo is the zeroth-order Bessel function. Hence, if
the ratio y eFd/co of the Bloch frequency 0 eFd and
the laser frequency ru is equal to a zero of Ju, the average
electron velocity vanishes for every initial quasimomen-
tum ku and the wave packet becomes "localized. " It is
remarkable that Ju simply appears as a multiplicative
factor of the group velocity hd sin(kud)/2 in the unper-
turbed superlattice. For this reason, the Bessel function
Jo also dominates the quasiclassical results [6,7].

The average velocity v is a measure of the extent to
which the individual wells "communicate"; another mea-
sure is the band width. It is, therefore, natural to assume
that the width of the quasienergy minibands is affected
by the laser field in the same way as v, and a detailed
analysis [12] shows that this is indeed the case. If the
original energy eigenvalues for the lowest miniband of the
undriven superlattice are given by
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of Ju at F 8589 V/cm, precisely where the miniband is
seen to collapse.

A more involved example is shown in Fig. 2: Now the
laser frequency rv 1.0 meV is more than 3 times smaller
than 6, which means that for small field strength the
miniband has to overlap more than 3 times with itself in
the Brillouin zone. Again, there are edge states which
behave differently from the rest of the miniband states,
but the overall agreement with Eq. (6) is quite good and,
as the next figure illustrates, the band collapses at the
predicted parameters.

Figure 3 shows a plot of quasienergies calculated from
the approximate equation (6) for the parameters of the

l
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FIG. 1. The los&est miniband of quasienergies for the model

potential VsL(x) with N 50 wells and a superlattice period of
d 140 A, plotted vs the strength F of the laser field. The verti-
cal axis is the first quasienergy Brillouin zone, vrhich extends
from e/iu —1/2 to e/ui + I/2. The laser frequency is m 5.0
meV. The predicted field strength for the band collapse is
F 8589 V/cm.
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As with v, the width of the quasienergy miniband should
become zero when y eFd/rv is equal to a zero of Ju.

The exact Floquet states and quasienergies have been
calculated numerically for the model system (1). Figure
1 shows the lowest miniband of quasienergies for m =5.0
MeV, plotted versus the laser field strength F. The fre-
quency m is larger than the original band width 6, 3.67
meV of the unperturbed superlattice, and therefore the
miniband fits completely into the first quasienergy Bril-
louin zone. Because of finite-size eN'ects, a pair of almost
degenerate edge states splits off from the top of the
quasienergy miniband, but apart from these two edge
states the agreement with the approximate formula (6) is
almost complete. For the superlattice period d 140 A,
the parameter y eFd/ro becomes equal to the first zero
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FIG. 2. The quasienergy miniband for co 1.0 MeV; all oth-
er parameters are the same as in Fig. 1.
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FIG. 3. Approximate quasienergies according to Eq. (6) for
co 1.0 meV.

F (v/~)
FIG. 4. Quasienergies in the vicinity of the first miniband

collapse seen in Fig. 2.

previous example. There are several features of the exact
quasienergies which are not accounted for by the approxi-
mation. First, the edge states on top of the miniband
push the rest of the band slightly down so that the col-
lapse value s in a finite superlattice is lower than the
center of the original band, modulo m [12]. More impor-
tant is the fact that the approximate quasienergies cross
in the zone of self-overlap, whereas there are avoided
crossings of the exact quasienergies. The model potential
VsL(x) is symmetric, VsL(x) VsL( —x), which implies
that the Hamiltonian (I) remains invariant under the
combined operation St. x —x and t t+T/2. The
Floquet wave functions u, (x,t) have odd or even parity
under Sp, and according to the von Neumann-Wigner
noncrossing rule [13] eigenvalues belonging to functions
of the same symmetry class in general do not cross each
other if only one parameter is varied, as is the field
strength F in the numerical calculations. The resulting
avoided quasienergy crossings can, however, hardly be
discerned in Fig. 2. The multiple self-overlap in the low-
field region leads to a very intricate level pattern that can
only be resolved on a much finer scale. Needless to say,
the appearance of avoided crossings refiects the possibility
of strong laser-induced intraband transitions [8].

Another consequence of the noncrossing rule is that
even for an ideal finite superlattice the collapse is imper-
fect. The approximate equation (6) predicts a total de-
generacy of all miniband quasienergies at the zeros of Jo,
but the exact quasienergies within one class of the ex-
tended parity Sp will repel each other also at these pa-
rameters. This fact is illustrated in Fig. 4, which shows a
magnification of the quasienergy spectrum in the vicinity
of the first collapse seen in Fig. 2. Equation (6) predicts
a collapse field strength of 1718 V/cm, in striking agree-
ment with the numerical result, but it is clearly visible
that the miniband maintains a finite width.

Finally, Fig. 5 shows the probability density of a Flo-

quet state in the model potential VsL(x) for to -1.0 meV
and F 1718 V/cm, the parameters for the first collapse
in Fig. 2. The disphyed interval between x = —1000 and
+1000 A contains fourteen wells. During one laser cycle
there is a sloshing motion right through the barriers that
couples several wells, in agreement with what follows
from Eq. (3). Thus, it can be seen that a vanishing
quasienergy miniband width does not imply that the
current between the individual wells also vanishes; it is
only the time-averaged current that goes to zero.

Obviously, the main deficiency of the ideal model dis-
cussed so far is that it does not contain any scattering. A
conservative estimate for the scattering time r in a super-
lattice is s = 5x10 ' sec. Even for the laser frequency
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FIG. 5. A Floquet state in the model potential VsL(x) at
m 1.0 meV and F 1718 V/em, corresponding to the first col-
lapse in Fig. 2. Lines connect points of equal probability densi-
ty ju(x, t) ) . There are fourteen wells between x —1000 and
+ 1000 A.
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to 5.0 meV this gives coi =4; of course, for higher fre-
quencies the product for becomes still larger. This means
that scattering will not completely blur the miniband col-
lapse. In an actual experiment, a compromise must be
made between high frequencies, attainable field strengths,
and convenient superlattice periods. It is also interesting
to note that the collapse can even be found in superlat-
tices with only a small number of wells [12].

To conclude, it has been shown that the width of a
quasienergy miniband in a far-infrared irradiated super-
lattice can efficiently be controlled by the strength and
the frequency of the driving laser field; the minibands col-
lapse almost completely if the ratio of the Bloch frequen-

cy 0 -eFd and the laser frequency ca becomes equal to a
zero of the Bessel function Jo. This collapse is the result
of an interplay of the spatial periodicity of the superlat-
tice and the temporal periodicity of the external laser
field. Both the periodic structure in space and that in

time are man-made and can be manipulated by the exper-
imentalist; indications for the miniband collapse can pos-
sibly be found by measuring the electronic transport
properties of a superlattice in the presence of the driving
field. Experiments of this type, which might eventually

open up a new line of semiconductor research, are
presently being prepared [14] at the free-electron-laser
facility of the University of California at Santa Barbara.
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