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Ion Acceleration and Coherent Structures Generated by Lower Hybrid Shear-Driven Instabilities
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It is shown that if tr=tos/cot, H ) 1 (Qts and att. H are the shear and lower hybrid frequencies), a sheared
electron cross-field flow excites the electron-ion-hybrid mode, causing significant perpendicular ion ac-
celeration. The electric potential develops coherent structures (vortexlike) longer than the electron Lar-
mor radius, p, . For x & 1, a smooth transition occurs where the wavelength becomes of the order of p„
the lower hybrid drift instability dominates, and the formation of vortexlike structures is no longer ob-
served. The results are relevant to laboratory, laser-produced, and space plasmas.

PACS numbers: 52.35.Qz, 52.35.Ra, 52.65.+z, 94.30.Gm

In this Letter, we report several novel effects that arise
in the nonlinear evolution of lower hybrid waves driven
unstable by the presence of shear in an electron cross-
field flow. We denote the flow's peak velocity by Vp and
the characteristic distance over which it is localized by
LE. The regime p, & L~ & p; is considered, where p, and

p; denote the electron and ion Larmor radii, respectively.
Such flows are commonly encountered in laboratory and

space plasmas; their occurrence plays an important role
in the dynamical evolution of a variety of physical sys-
tems including the earth's magnetospheric boundary lay-
ers (such as the magnetopause or the plasma sheet
boundary layer) [1], laser-produced plasmas [2], and
chemical release experiments in the Earth's magnetotail
[3].

It is well known that an electron cross-field flow can ex-
cite lower hybrid waves via the lower hybrid drift [4] or
modified two-stream [5] instabilities. In this work, we

show that when a sufficient amount of shear is present in

the electron flow (as is the case in a number of realistic
cases) significant modifications occur in the nonlinear
state generated by these waves. To this end, we define
the shear frequency cps = Vp/Lq. It is shown that if cps is

comparable to or larger than the frequency of the wave of
interest (in this work it is the lower hybrid frequency
rot. H), velocity shear leads not only to quantitative
modifications of the nonlinear waves, but to the appear-
ance of a new mode in the system that can dominate its
dynamical evolution and significantly alter its final non-
linear state. We have recently reported the linear proper-
ties of this new plasma mode which we denote as the
electron-ion-hybrid (EIH) instability [6].

The equilibrium configuration consists of an electron-
ion plasma immersed in a uniform magnetic field that is
directed along the z axis: B =Boa, . A boundary layer of
width LE separates two regions, one containing a high-
density plasma and the other a low-density plasma. To
be specific, we assume that the density variation occurs
along the x axis, i.e., in a direction perpendicular to the

confining magnetic field. In equilibrium, since LE (p;,
no bulk ion motion occurs [6]. Ion force balance then re-

quires the existence of a localized electric field, directed
along the x axis, in order for this density gradient to be
maintained. It is convenient to choose the spatial varia-
tion of the localized electric field in the range 0 & x & L„
as follows:

E(x) =(Ep/Np)[F(g xp) F(&+xo)],

where

g =x —L„/2,

F(g) =sech'(g/LE),

No=1 —sech (2xp/Lg)

is a normalization constant, and xp determines the dis-
tance separating the two regions in which the externally
imposed electric field is either positive or negative. In
this paper, xo»LE which yields No= 1. Then, the peak
value of the electric field occurs at the points L„/2+ xp
and is given by Ep, respectively. Since the ion temper-
ature T; is assumed to be spatially uniform, force balance
gives the following expression for the ion density:
n;(x) =N; exp[(C;/Np)D(g)], where C; =2EpLF/Bpp; V;,
V; is the ion thermal velocity, N; is a constant,
D(g) =G(g —xp) —G(g+xp), and G(g) =tanh(g/La. ).
The resulting density profile is symmetric about the point
L„/2, allowing the use of periodic boundary conditions in

the numerical simulation of the time evolution of the sys-
tem. Of course, in equilibrium, the ion velocities are
given by an isotropic nondrifting Maxwellian distribution
function with thermal velocity V;.

Since p, & LE, the electric field given in Eq. (1) causes
a cross-field electron flow in the y direction. Because the
electric field is nonuniform, the distribution function devi-
ates from being a simple drifting Maxwellian [7]. Expan-
sion in terms of the assumed small parameter p, /LE leads
to the following result:
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n, (xg)
F, = exp~-

[g(x)] '"(nv, )"'
W ~ + C'z2, 2 )

V2

where Xg =x+v~/0, is the guiding center, 0, is the elec-
tron cyclotron frequency, w~ =v, +w~/q(x), w~ =i~
—VE (x), VF. (x) = —E(x)/Bo is the sheared electron
cross-field flow, V, is the electron thermal velocity, and

rl(x) =1+VF'/0, Th.e expression is accurate to second
order in p, /LF. , and we use a prime to denote taking the
derivative with respect to X. Finally, to initialize the sys-

tem, the electron density is determined from the
quasineutrality condition n, (x) =n;(x) —(I/e)E', where
e is the electron charge.

The nonlinear evolution of the system is investigated
using a standard, electrostatic, 2 2 D particle-in-cell
(PIC) code in which the ions respond to the full Lorentz
force, i.e., they are not assumed to be unmagnetized. The
values of the physical parameters used in the simulation
are Lx/~o =41.6, Ly/)to =100, LF/ko =1 6 xo/Lz =6 4
and p, /ko=r0~, /0, =0.52. The quantities L„and L,,

denote the system length in the x and y directions, respec-
tively, co~, is the electron plasma frequency corresponding
to the region of higher plasma density, and Xo =V, /co pis

the Debye length. The ion to electron mass ratio being
used is 400, the ion and electron temperatures are equal
to each other, and the total number of particles used in

the simulation is 786432, half of which are ions and half
electrons.

The electric field is decomposed into two constituents:
The first is doubly periodic in the two spatial dimensions,
and the second is time independent and given by Eq, (1).
This latter component represents the effects of a constant
driver in the system. For instance, in the case of magne-
tospheric boundary layers, it models the effects due to
coupling with the solar wind, which maintains density
variations of over 2 orders of magnitude in a distance
smaller than, or of the order of, the ion Larmor radius at
the boundary layers [11. The time-dependent doubly
periodic field component is obtained by solving Poisson's

equation in a mesh containing 64 nodes in the x direction
and 128 nodes in the y direction.

We next demonstrate that whenever the dimensionless

quantity x =&os/roLH is larger than unity, the EIH mode
is excited [6] and dominates the nonlinear evolution of
the ensuing lower hybrid ~aves. To see the physical ori-
gin of this effect, consider the linear dispersion relation
for the electrostatic potential p(x) of lower hybrid waves.
Assuming a flutelike perturbation, there results the fol-
lowing approximate equation for y(x) [6]:

C

with ~ the angular frequency and k~ the wave number
in the y direction. In addition, A (x) = (1+6 ) (1 —roLH/

ro2), P=rLi~, /O„and 5, =(inn, )' —VF/tt, . If shear ef-
fects are neglected and the local approximation is em-

ployed in Eq. (2), the well-known dispersion relation for
the lower hybrid drift instability is recovered [4]. How-

ever, if the flow is such that res & cuLH (i.e., a. & 1), the
resonance condition cu —k~V~-0 is satisfied within the
flow channel leading to substantial changes in the wave

dispersion properties: The EIH mode is excited with a

characteristic wavelength which we have found to be
comparable to LF (i.e., k~LF —1) [6]. Since the EIH in-

stability is a resonant fluidlike mode, it is similar in char-
acter to the Kelvin-Helmholtz instability [8], its principal
difference with this mode being the additional resonance
(1 —coLH/co ) appearing in the coefficient 3 (x). We con-
clude that a & 1 is the condition to be satisfied in order
for shear in the electron cross-field flow to play an impor-
tant role in the time evolution of nonlinear lower hybrid
instabilities. A similar result (i.e., that shear plays an im-

portant role when x & 1) was recently obtained in a study
which examined the linear theory of nonlocal effects on
the lower hybrid drift instability [9].

The two spatial variables on which the plasma quanti-
ties depend are x and y. For the magnetic field being
directed along the z axis, this corresponds to flute pertur-
bations, i.e., k~]=0. For reference, t =0 corresponds to
the system being in equilibrium. In order to best illus-

trate the principal conclusions of this paper, we choose
an electric field amplitude such that res =F0/BoLp
=10.8art. H (i.e. , x =10.8). We present in Fig. 1 a con-
tour plot of the electrostatic potential @(x,y) which

clearly shows the formation of closed potential contours

d dy(x)
A (x) + —ky'A (x)y(x)

dx Jx 0.5 0.75

S,y(x), (2)

where the perturbation has been Fourier decomposed

x x

FIG. 1. Contour plot of the electrostatic potential showing
the formation of coherent vortex structures at coLHt =7.2. The
sheared flow has been chosen so that K =10.8.
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after a time interval corresponding to copHt =7.2. Since
the electron motion occurs (approximately) on surfaces of
constant electric potential, these structures imply the gen-
eration of coherent vortex structures in the plasma flow.
As these coherent structures evolve, they tilt with respect
to the x axis making (alternatively) an angle of the order
of + 15 . This observation is common to a .number of
nonlinear simulations of shear-driven instabilities in fluid

mechanics [10].
There are three important features associated with the

formation of these coherent structures. First, we find that
the structures typically last for 20 lower hybrid times,
somewhat over 2 ion gyroperiods. The reason for this is
that the system exhibits substantial anomalous viscosity:
For tr & 5, the magnitude of the cross-field flow is found

to diminish as a function of time according to I/Jl+Kt,
where K depends on x but is time independent. Hence,
the source of free energy for the instability is rapidly de-
pleted and this accounts for the typical lifetime of these
coherent structures. In conjunction with the decay of the
vortexlike structures, the typical frequency of the system
cascades down toward the ion cyclotron frequency.
Second, we find that as x is varied (by changing the value
of Eo while keeping all other parameters fixed), the wave-

length of these structures is closely correlated with that of
the fastest growing mode obtained by solving the linear
dispersion relation of the EIH instability [6]. This is
shown in Table I, which indicates that for x & I the typi-
cal wavelength of the shear-driven lower hybrid waves
satisfies the relation k~Lq-0. 7. Note that in view of the
condition p, &LE, the EIH wavelength is much longer
than the one corresponding to the lower hybrid drift in-

stability, for which k~p, —(T,/T;)'/, where T, is the
electron temperature. Table I also indicates that the
wavelength becomes larger as the value of rc is increased
while keeping T,/T; =1. More importantly, we find that
for x & 1, the time evolution of the system is such that
the potential @(x,y) no longer develops closed potential
contours (by inference, vortex structures in the plasma
fiow). Rather, it exhibits lateral kinks whose characteris-

tic wavelength is on the order of the electron Larmor ra-
dius. These latter features have been previously observed
in the nonlinear evolution of the lower hybrid drift insta-
bility [4], and imply that a smooth transition takes place
in the system dynamics depending on whether x is larger
or smaller than unity, velocity shear effects dominating
when x & 1. Third, we find that the development of these
coherent structures is not hindered if the magnetic field is

allowed to make a small but finite angle with the z axis
(i.e., by a finite but small value of kt). For example, for
a =10.8, the magnetic field can make an angle of up to
10' with the z axis before the formation of these struc-
tures is appreciably diminished.

Figure 2 shows the y velocity ion distribution function,
both at equilibrium (t =0) and at time tot Ht =20.3, for
x =10.8. The distribution function is calculated using
only those ions which are present at the given times in the
immediate vicinity of the sheared electron liow channel (a
subset of the simulation box within which small fluctua-
tions occur in the local ion density): To be specific,
within the domain 6 &3.2 and ~(y L~/2)/LF. ~

—& 3.8,
where 6 =

~
(x L„/2 x—o)/LE —). For the long-wavelength

mode considered in this study, ion acceleration can result
from the resonant interaction of ions with a time-varying
electric field directed along the y axis, i.e., we need not
invoke three-wave coupling processes [11] to develop low-

phase-velocity waves in the system. To see this, note that
the y velocity for resonant ion interaction is given by
t.„=pV;(tot.H/tot, ;)(L~/XD)/k~L~, ~here p =Z; T,/T;, Z;
is the ion charge state, and mz,. is the ion plasma frequen-
cy. For the case K=10.8, we find that v, -2V;, which
correlates well with the result shown in Fig. 2.

In this Letter, we have reported the occurrence of
coherent structures (vortexlike) and significant resonant
ion acceleration in the nonlinear evolution of lower hybrid
instabilities. These effects have been shown to be gen-

TABLE I. Comparison between the wavelength correspond-
ing to the fastest growth rate of the EIH mode (given under the
heading k~Lg) and the resulting number of vortices (V) or
kinks (K) observed in the PIC simulation (given under the
heading N PIC). The number of vortices corresponding to the
EIH mode wavelength is sho~n under the heading N EIH. The
definition a, =cos/0, is used.

Qe

0.25
0.20
0.15
0.10
0.05
0.01

10.8
8.7
6.5
4.3
2.2
0.4

kyLE

0.40
0.50
0.60
0.80
1.25
3.30

N EIH

5
6
8

12
40

N PIC

6
7
8

10
11
14

V/K

V
V
V
V

V,K
K

0

v„ / U;

FIG. 2. The ion distribution function, given at equilibrium
(dashed curve) and at time cuqHt =20.3 (solid curve), shows res-
onant ion acceleration due to the long-wavelength shear-driven
(x.=10.8) lower hybrid turbulence.
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crated by the presence of sufficient shear (ic) 1) in an

electron cross-field flow. The conclusions of this work

significantly impact the following areas: (i) space plasma
physics, in particular, shocklike and magnetospheric
boundary layer dynamics, (ii) the physics of laser-
produced plasma jets, and (iii) research on chemical
release experiments in the Earth's magnetotail. This
work is particularly pertinent in the study of magneto-
spheric boundary layer dynamics on account of recent ob-
servational evidence which establishes that sharp density
gradients exist in such structures [I]. In regard to laser-
produced plasma jets, we note that the wavelength and

growth rates observed in their structuring have been re-

cently shown to be well described by the EIH mode dis-

cussed in this study [2]. Finally, in connection with

chemical release experiments [3], we note that the lower

hybrid drift instability has thus far been the leading can-
didate used to explain the structuring of the barium plas-

ma clouds released in the Earth's magnetotail [12].
However, the wavelength associated with this instability
has been found to be up to 10 times smaller than that
typically observed. Since significant shear develops in the
electron cross-field flow of the expanding barium clouds
[3], we propose that the electron-ion-hybrid mode pre-
sented in this study is a likely candidate to account for
the experimental observations.
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