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Ponderomotive Force of a Uniform Electromagnetic Wave in a Time Varying Dielectric Medium
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A ponderomotive force associated with a uniform electromagnetic wave propagating in a medium with
time varying dielectric properties [e.g. , e=e(x —vpt)l is identified. In particular, when a laser ionizes a
gas through which it propagates, a force is exerted on the medium at the ionization front that is propor-
tional to (Ve)E rather than the usual (e' —l )VE . This force excites a wake in the plasma medium
behind the ionization front. The ponderomotive force and wake amplitude are derived and tested with

1 D particle-in-cell simulations.

PACS numbers: 52.35.Mw, 41.20.Bt, 42.25.Md, 52.50.Jm

The ponderomotive force of an electromagnetic wave is

responsible for such diverse phenomena as radiation pres-
sure, parametric instabilities in plasmas [1,2], "optical
tweezers" for confining and manipulating particles, self-

focusing of electromagnetic waves in media and in plas-
mas [3], profile steepening in plasrnas [4], and laser ac-
celerator schemes [5]. An expression for the ponderomo-
tive force can be derived either by computing the diver-

gence of the Maxwell stress tensor for a dielectric medi-

um or by considering the motion of single particles in the
medium. By either method, the ponderoinotive force is

generally found to be proportional to the gradient in elec-
tromagnetic wave intensity. In this paper we identify the
possibility of a ponderomotive force associated with a
uniform electromagnetic wave in a medium with time

varying dielectric properties. In particular, in a station-
ary medium such that the dielectric function is of the
form e =e(x —vttt), we show that a large ponderomotive
force is exerted on the medium even when there is no ap-
preciable gradient in electromagnetic wave intensity.
One way to realize this situation is with an intense laser
that ionizes a gas through which it propagates.

Besides being of fundamental interest, the ponderorno-
tive force associated with a uniform electromagnetic wave

could have important consequences for current short
pulse laser experiments. These include experiments to
study ionization and harmonic generation in gases [6,71,
recombination x-ray lasers [8], and plasma accelerators
[5]. We show that the new ponderomotive force can pro-
duce a wake field in the plasma behind the ionization
front created by the laser. For plasma accelerator appli-
cations this wake excitation is an attractive means of
overcoming technological barriers to demonstrating a
near term laser wake-field accelerator. In particular, the
need for ultrashort laser pulses (to provide a gradient in

intensity and hence a ponderomotive force) is eliminated.
In this Letter we first review the ponderomotive force

resulting from a laser pulse propagating (in the x direc-
tion) in a static medium with a constant dielectric func-
tion and from a laser pulse moving in a dielectric with a
spatial gradient. We calculate the force from both the

macroscopic and single-particle perspectives to show that
it can always be expressed as a gradient in laser intensity.
We then use a single-particle picture to calculate a pon-
deromotive force in a medium where the density depends
on the variable x —vot and vo is near c; we show that in

this case the force depends on the gradient in e, not the
gradient in laser intensity. The theoretical predictions for
the wake amplitude are then compared to particle-in-cell
simulations.

We begin with the conservation of momentum equation
for fields and particles,

tl EXB +~ E +B
I EE+BB

Bt 4trc 8tr 4tr

where n is the density of free charges, F is the force on a
free charge, and I is the unit dyadic. For simplicity we

consider a medium in which there are no bound charges,
i.e., a plasma. So E and B rather than D and H appear
in Eq. (I). However, the free plasma particles affect the
relationship between B and E. For plane waves their re-
lation follows simply from Faraday's law, giving

B=(ck/to)E =JeE,
where e is the dielectric function for the free particles.
Substituting into Eq. (I ) gives

r

+ (e+ I ) +nF„=O.
t)t 4ttc elx 8 tv

We now apply Eq. (3) to two specific cases: an elec-
tromagnetic pulse in a uniform plasma and an infinite

plane wave propagating along a density gradient. Con-
sider an electromagnetic pulse propagating through plas-
ma. The pulse moves at the group velocity of light,
vs=c k/to=cJe. Therefore, the envelope depends on

the variable x —vgt =x cJet from—which it follows that
l)/8t = —cJe8/clx. Upon making this substitution Eq.
(3) reduces to

+ a J.(E') a ( e+)(I'E)
Bx 4trc Bx 8n
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where ( ) refers to averaging over the high-frequency os-

cillations. If Be/Bx =0 then we obtain
motion for v and using Faraday's law to calculate 8, the

q v x B/c force is

(e- I) B &E& =nF, ,
Bx 8z

(5) , —E(x) E(x) .q 1 B

mao 2

which is the usual expression for the ponderomotive force
[9].

We next consider the steady-state situation of radiation

propagating up (or down) an underdense density gra-
dient. In this case B/Bt 0 and the spatial envelope for
E is given by the WKB solution

E =E(x)cos dx k(x) —rot

where k(x) = /@too/c, E(x, t) =En/e', and Eo is the in-

cident electric field. Substituting Eq. (6) into Eq. (3)
and letting B/Bt 0 gives

Eo 1 e —
1 Be

16tt 2 et Bx

This can be rewritten as

(e —1)
B &E') =nF, , (8)

Bx 8n

where we have substituted (E )/8tr for (Eo/16tr)/e'
We once again recover the usual formula for the pondero-
motive force, expressed as a gradient in laser intensity.
The spatial gradient in t. aA'ects the force implicitly by
causing a gradient in E ~

These points can be seen clearly if we recall the deriva-

tion of the force from a single-particle picture. The only

force in the x direction on a particle with charge q and

mass m is the qvx8/c force. We use the expression in

Eq. (6) where the envelope E(x) and the wave number

k(x) can be arbitrary. Solving the linearized equation of

e~ —e~(O)
pz (io)

p~~
—ymc = —mc,

where A(0) is the value of the vector potential at the
time when the electron is born. The first equation follows
from conservation of the transverse canonical momentum
and the second follows from subtracting the energy equa-
tion from the parallel equation of motion. The constants
on the right-hand side follow from the assumption that
the electron's momentum is zero at the instant it is first
ionized. Combining (10) and (11) yields

For electrons of density A, this can be rewritten as

tot B (E') B (E')
nF, =— =(e —1)

coo Bx 8tr Bx 8tr

where cot, 4zne /m. Therefore, we find explicitly that
the usual ponderomotive force exists only when there is a
gradient in electric field intensity. This gradient could be
the result of a pulse envelope, a gradient in dielectric
properties, or simple reflection (as in radiation pressure
on a mirror).

Next we consider the ponderomotive force for the spe-
cial case of a light wave propagating along with a comov-
ing ionization front. In this case E is approximately
constant, but e is not. The ionization may or may not be
created by the light wave itself. To determine the force
exerted at the ionization front we return to the single-
particle picture. The force follows by considering the
well-known constants of motion for particles in a plane
electromagnetic plane wave [10]:

e 2 eAO2 2

pt =
3

[A —A(0)] = [sin (tot —kx+p)+sin P
—2sin(cot —kx+P)sing],

2fflc 2@le
(i 2)

where we have assumed the electromagnetic wave-vector
potential to be of the form 3 =Rosin(tot —kx+p) and
that ionization occurs when the phase of A is p.

From (12) we see that each successive ionization will

add a time-averaged nonzero momentum to the fluid.
The ponderomotive force on the fluid follows from the
rate of momentum increase:

This expression is valid whether the ionization is created
by a moving front or by flash ionization everywhere in

space. When the ionization is produced by a front of ve-

locity vo=c, we can approximate B/Bt = —cB/Bx to ob-

tain

d 6nnF = np)( = &p)(& .
dt Bt

nF = (e —1) (I + 2 sin'y) .B &E)
ax 8~

(i 5)

nF=— B &E'&
(e —1) (1+2 sin'y) .

Bt Sic
(i 4)

Here we have neglected the convection derivative, valid
for eA/mc & 1. Taking the time average of (12) and
substituting e —

1
= —4trne /mro gives

This is the ponderomotive force on the plasma arising
from the ionization front. In this case the force results
from the gradient in e rather than E . Equation (15) is

analogous to Eqs. (5) and (8) except for the term
1+2sin P, which depends on the phase P of the electric
field at the time that an electron is born. If electrons are
born only at the peak of the electromagnetic wave field,
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then p =0 and the ponderomotive force is simply
[(c)/c)x)(e —1)](E )/8tt as one might have guessed from

heuristic arguments. However, if electrons are born at
other phases of E, then the ponderomotive force is in-

creased by the factor 1+2sin p. We emphasize that this

force is diA'erent from the usual ponderomotive force in

that free electrons do not continue to accelerate in

response to it. Rather the force represents a local in-

crease in fluid momentum due to the addition of new par-
ticles with identical parallel momentum.

To make connection with the usual ponderomotive
force we consider an isolated electron starting from rest
which is overtaken by a laser pulse. The electron will ob-
tain a parallel drift proportional to the laser's instantane-

ous intensity [Eq. (12) with &=0]. Therefore, it takes
the entire rise time to obtain the peak drift momentum.
In a plasma the electron is prevented from drifting by the

space charge of the ions unless the laser pulse is shorter
than a plasma period. However, when the electron is

born inside the laser pulse it acquires the drift associated
with the laser's local intensity within a single laser cycle;
i.e., it responds as though the laser had an instantaneous
rise. This eA'ect has important consequences for the ion-

ization of atoms. Specifically, it will push the electron

away from the atom immediately after ionization and

may prevent stabilization that has been predicted for
high-intensity lasers [11].

In order to prove that this ponderomotive force is real
we demonstrate that it will produce a wake just as the
ponderomotive force from a short laser pulse does. The
force at the ionization front will displace plasma electrons
relative to plasma ions. The displaced electrons experi-
ence a restoring force due to the ion space charge. The
resulting electron oscillation supports a plasma wake at
frequency co~ and phase velocity cJe.

The amplitude of the wake is easily obtained from a
Lagrangian description. The initial velocity of a La-
grangian fluid element is found from (12):

If the electrons are born at the peak of a laser oscilla-
tion (&=0), then the wake atnplitude is ~eE /mco~c~
=A /4. This is exactly the wake amplitude that would

be excited by a square light pulse (of amplitude A) in a
uniform plasma. If the electrons are born at other phases
of the laser, even larger ~akes result.

To verify the predictions of these simple models we

have performed simulations of the wake excited by a uni-

form light wave and a moving front. Sample simulation
results are shown in Fig. 1. A laser propagates to the
right at frequency co=5co~ as shown in Fig. 1(a). The
laser self-consistently ionizes a gas at a rate given by the
Keldysh formula producing the plasma (ion) density
profile shown in Fig. 1(b). The ionization is very rapid
once the laser exceeds an approximate ionization thresh-
old (eE/mtooc = 0.1). The resulting plasma wake poten-
tials are shown in Figs. 1(c) and 1(d) for peak laser fields

eE/mtooc=0. 15 and 0.3, respectively. The wake ampli-
tudes agree with the scalings predicted by Eq. (18) for
sin p- —,'. We have also obtained similar results from

simulations in which a uniform light wave is initialized
and an ionization front moving at Lo Ug is imposed.

We comment that plasma temperatures in the range of
0 to 2.5 keV were modeled with no apparent difference in

the wakes produced. In these simulations, the ionization
took place very rapidly. In order for a wake to be excit-
ed, the ionization must take place on a time scale shorter
than m~ '. This is analogous to the need for a short rise
time laser to excite a wake with the conventional pon-
deromotive force.

The wake produced by the mechanism of this Letter
may be important in near term laser experiments in

several ways. First, for high-ionization-potential gases
such as He, wakes of order 100 MV/m can be excited and

may be a convenient means of studying future plasma-
based concepts for accelerating particles. Second, the

(a)
vto= —,

'
A (1+2sin C)),

where 3=eEo/mcuc is t—he normalized vector potential
amplitude of the light wave, and we have assumed to

»to~ so that we could average Eq. (12) over a laser cy-
cle. If v][0&&c then the fluid element satisfies

where g is the displacement of the fluid element and

g(t = —x/vo) =vto is from Eq. (15). Solving for g and

applying E (x, t) =4tteno((x, t) gives for the wake elec-
tric field E (x, t):

eE /mto~c = —, A (1+2sin p)sinco~(t x/vo) . —(18)
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This is the plasma wake field caused by the ponderomo-
tive force of a uniform light wave that ionizes a gas at po-
sition x =vot. Note that the wake amplitude depends on
the phase p of the laser when the ionization occurs.

FIG. 1. 1D particle-in-cell simulations of wakes excited by
the ponderomotive force at the moving interface between a
gaseous and plasma medium. (a) Laser field eE/mcooc, (b)
plasma ion density, and electrostatic wake potential ep/mc for
peak laser fields (c) eE/mcooc =0.15 and (d) 0.30.
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wake created, though itself small, may seed the growth of
the Raman forward scatter instability of the laser. Third,
the scattering of the laser on the wake can produce
Stokes and anti-Stokes sidebands of the laser at co ~ neo~.

The sideband structure may be quite dift'erent from that
characteristically arising from Raman forward scatter in

a preformed plasma. In particular, it may favor upshifts
(to+nto~). We have seen this in the laser spectra of our
simulations. Fourth, the density response associated with

the last term in Eq. (12) beating with the transverse
quiver oscillation will lead to the generation of even har-
monics of the laser not usually present in preformed plas-
mas. Finally, we note that multiply ionized atoms can
produce a new wake each time the laser amplitude
exceeds the threshold for a succeeding ionization (for
plasma densities low enough that collisional ionization
does not occur). By the time the final electron is

stripped, the laser amplitude may be quite high and the
wake correspondingly large.
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