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It is argued that for d > 1, chaotic systems with a conserved quantity can exhibit generic scale
invariance— algebraic decay of spatial correlations without the tuning of external parameters— with ex-
ponents analytically calculable from noisy nonchaotic models. Numerical confirmation of these predic-
tions for a specific coupled map system is presented.

14 DECEMBER 1992

PACS numbers: 05.45.+b

Over the past few years it has become clear that a
broad class of nonequilibrium systems with external white
noise exhibits generic scale invariance— correlations that
decay like power laws in both space and time without the
tuning of external parameters. The first example of this
phenomenon was provided by fluids in a temperature gra-
dient, where the static structure factor was argued
theoretically [1] to diverge for arbitrary parameter
values, a prediction recently verified experimentally [2].
It has since been shown analytically [3-5], and verified in
part numerically [6], that, at least in one-component sys-
tems, local conservation is a necessary [7] and almost
sufficient [8] condition for generic algebraic correlations
in noisy driven systems. One-dimensional (1D) systems,
wherein local conservation laws are typically not suf-
ficient to produce scale invariance, are the main excep-
tion. For systems with a single-component field on hyper-
cubic lattices in d > 1 space dimensions, spatial correla-
tions are predicted [4,5] to decay as 1/r? and 1/r9*? in
systems that respectively break or respect the hypercubic
symmetry.

In deriving these results from perturbative renormal-
ization-group (RG) arguments [4], one tacitly assumes
that the systems in question have modest nonlinearities
and so are nonchaotic. It remains to be seen whether
generic scale invariance continues to hold in noisy con-
serving systems driven strongly enough to produce chaos.
One is further led to ask whether in noiseless conserving
chaotic systems the chaotic fluctuations simulate [9] the
effect of external noise and so produce algebraic correla-
tions. In this paper we propose heuristic arguments to
suggest that both in the presence and in the absence of
noise, many conserving chaotic systems do indeed exhibit
generic scale invariance for d > 1. We present numerical
evidence for coupled map lattices with d =2 and d=1
which supports these conclusions, and further indicates,

in agreement with the heuristic arguments, that the ex-
ponents characterizing the power-law decays in chaotic
systems are the same as those predicted analytically for
noisy nonchaotic ones. These results suggest that in the
presence of local conservation generic scale invariance
with simple predictable exponents may hold as widely in
chaotic systems, whose analytic intractability is notorious,
as in noisy nonchaotic ones.

We now discuss the reasons to expect generic scale in-
variance in conserving chaotic systems. First consider
systems with external white noise. In such systems the
onset of chaos, as a control parameter is varied, is often a
purely local phenomenon, rather than a collective one or
phase transition: One can regard the chaotic fluctuations
as simply superimposed upon the underlying nonchaotic
phase, the correlations between the fluctuations at
different sites being purely short ranged. (Arguments
and supporting numerical evidence for this assertion are
given in Refs. [10] and [11].) Since there is no change of
phase, the generic algebraic decays of spatial and tem-
poral correlations characterizing the nonchaotic regime
continue to hold in the chaotic one, and with the same ex-
ponents. Next imagine reducing the external noise to
zero in the chaotic state (assuming, without loss of gen-
erality, that the chaos persists in the noiseless limit).
Though one cannot argue with certainty that the asymp-
totic correlations are unaltered in this limit, given that
the effect of noise is typically decorrelating, one’s strong
expectation is that correlations in noiseless systems
should decay at least as slowly as those in noisy ones.
One concludes that conserving, noiseless, chaotic systems
can also display generic scale invariance, with exponents
which, if they differ at all from the noisy case, correspond
to slower decays.

To test these ideas we study coupled conserving maps
[12] evolving in discrete time on square lattices with
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periodic boundary conditions. Let S,(i) denote the dy-
namical variable at site / at time ¢. The updating is syn-
chronous and is given by

J

+%[S,2(i)—S,z(i+2i)]+n,(i), (1)

where j denotes the four nearest neighbors of 7, X is a unit
vector along the x axis, and f(S)=S—S3. The control
parameter v regulates the nonlinear diffusive coupling be-
tween sites and the third term introduces x-y anisotropy
and breaks reflection symmetry in x, as does the last
term, n,(i), a noise variable generated from a second set
of noise variables 7j,(i) so as to satisfy the conservation
law n,(i)) =7, +X) — 7, —X). The 7, (i) are chosen in-
dependently and randomly from either a Gaussian distri-
bution with (7,(i1))=0 and (7, ()7,(;j)) =028 ;8,,, or
(as is more typical in the simulations) from a distribution
function uniform for || <o and 0 otherwise. Finally,
the rule (1) conserves the variable S,(i) locally: p
=N "'YX,S,(i) is independent of 7, where N is the
number of sites.

Let us now briefly summarize part of the phase dia-
gram of model (1). For small v and in the presence of
small noise the system is in a spatially homogeneous 1-
cycle phase. Straightforward linear stability analysis
shows that at v=v{=1/(1—3p?) this phase first be-
comes unstable at the wave vector q=Q=(x,n). The
system undergoes a transition into a spatially ordered,
checkerboard (‘“‘antiferromagnetic”), temporal 2-cycle
phase in which the odd and even sublattices assume
values a and b at alternate times. We refer to this as the
AF I phase. As v is increased beyond [13] v¥ =3 v{, the
system undergoes a transition into a temporal 2-cycle
wherein the odd sites assume values a; and a; at odd and
even times, respectively, while the even sites assume
values b and b, consistent with the conserved value of p.
Thus the antiferromagnetic order parameter develops a
nonzero temporal average. We refer to this as the AF 11
state. Upon further increase of v the model displays a
chaotic two-band phase with long-ranged antiferromag-
netic order, i.e., local, chaotic fluctuations superimposed
on the AF I state. The power spectrum has a characteris-
tic broadband background, with sharp features at fre-
quencies w = £ & corresponding to the two-band oscilla-
tions. We take positive Lyapunov exponents as the signa-
ture of chaotic phases.

For zero noise other phases (e.g., temporal 4-cycles)
can occur, and the phase diagram can, not surprisingly,
depend on initial conditions. As our goal is to study
correlations in chaotic phases rather than details of phase
diagrams, we work exclusively in the chaotic two-band
phase, as far as possible from transitions to other phases.
Though for sufficiently large v, model (1) can become un-
stable, and runaways to arbitrarily large values of S(i)
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can occur, we consider only v’s for which, at least within
our numerical limitation of several million time steps per
site, the variables remain bounded. One can argue
analytically that there exists, for zero noise, a range of v
above the onset of chaos for which the variables remain
bounded by unity provided their initial values are bound-
ed.

The results are given in Figs. 1-4. Each of these
figures shows a log-log plot (note that natural logarithms
are used in this paper) of the absolute value [14] of
the equal-time spatial correlation function G(r)
=([S, (i) = (S, GNILS, (j) = (S, (1) vs r, for r along the
x axis: r=rX; similar results hold for r=ry. The angu-
lar brackets represent averages over time and over i and j
with r=i—j; data for values of r up to 40 or 50 are
shown. The data displayed were taken for p=0.10, but
the results are independent of p.

Figure 1 shows, as a control, data for the nonchaotic,
temporal 1-cycle, spatially uniform phase in the presence
of noise. The straight line in the figure has a slope of
—2, the theoretical prediction for noisy anisotropic
phases in two dimensions [4,5]; the data are nicely con-
sistent with this value.

Figure 2 shows data for the (nonchaotic) AF I phase in
the presence of anisotropic noise. (Similar results were
obtained for the AF Il phase.) The slope is again con-
sistent with the value of —2. Note that although the —2
result was derived in Ref. [4] for spatially uniform
phases, essentially identical arguments can be made for
the ordered checkerboard phases that occur here. Note
that the data for odd and even values of r in Fig. 2 are
staggered. Indeed, these data are consistent with alge-
braic decay both in the g =0 and ¢ =Q modes. This
seems surprising at first glance, since the antiferromag-
netic order parameter is not conserved in the system. the
result can, however, be understood by considering a sim-
ple Langevin model with two coupled variables, one con-

FIG. 1. Log-log plot (natural logarithms) of G(rX) vs r for
the (nonchaotic) 1-cycle phase of model with external noise (1),
with v=0.8, a=0.25, p=0.10, and 6=0.02, on a 100x 100 lat-
tice. The straight line has slope —2 consistent with previous
theoretical expectations.
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FIG. 2. Log-log plot of G(rx) vs r for AF I phase of model
with external noise (1), with v=1.30, «=0.25, p=0.10, and
6=0.02, on an 80x80 lattice. The straight lines have slope
—2. Note the staggering of points for even and odd r showing
“induced scale invariance” in the Q =(x,7) mode.

served and the other not. It can be shown [15] that the
conserved mode induces power-law spatial correlations in
the nonconserved one. Thus our numerical data show this
phenomenon of “induced scale invariance.”

Figure 3 shows data for the chaotic checkerboard (AF
I) phase in the presence of external noise. The maximum
Lyapunov exponent was calculated to be 0.415=+0.01.
Again, the straight line indicating scale invariance has
slope — 2, consistent with the heuristic prediction that the
asymptotic behaviors of chaotic and nonchaotic phases
with external noise are identical.

In Fig. 4 we show data for G(ry) in the chaotic check-
erboard (AF 1) phase with no noise, for parameters for
which the maximum Lyapunov exponent is approximately
0.42. The results are in good agreement with the heuris-
tic arguments presented earlier, yielding an exponent of
— 2. Similar results hold along the x direction. It is im-
portant to emphasize that no parameters have been tuned
to produce the observed power-law decays. We have tak-
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FIG. 3. Log-log plot of G(rX) vs r for the chaotic, checker-
board (AF 1) phase of model (1) with noise, with v=1.91,
a=0.00, p=0.10, and ¢=0.05, on an 80x80 lattice. The
straight line has slope — 2.
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FIG. 4. Log-log plot of G(r§) vs r for the chaotic, checker-
board (AF I) phase of the deterministic version of the model
(1), with v=191, a=0.25, p=0.10, and 6=0.00, on a
100x 100 lattice. The straight line has slope —2.

en data for several values of v in the chaotic checker-
board phase, to verify that the results are indeed charac-
teristic of the entire phase. Thus the system with only
deterministic chaos displays power laws consistent with
the predictions for a noisy laminar state.

As another check, we have computed G(r) in a 1D ver-
sion of model (1), without noise, in the chaotic phase.
The data do not fit a straight line on a log-log plot, con-
sistent with the theoretical prediction for noisy, nonchaot-
ic systems that generic scale invariance does not occur in
1D. The structure factor typically shows a broad peak at
some g near Q indicating short-ranged order. Figure 5
shows the data on a semilogarithmic plot; the data are
consistent with a correlation length of 2 to 3 lattice spac-
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FIG. 5. Log-linear plot of G(r) vs r for the chaotic phase of
the 1D version of model (1) without external noise, with
v=1.94, a =0.25, p=0.00, and 6=0.00, on a 1024 lattice. The
data indicate exponential decay (with a correlation length of 2
or 3 lattice spacings) consistent with theoretical expectations.
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ings.

These numerical results. strongly support both the sim-
ple physical arguments predicting generic scale invari-
ance in conserving chaotic systems with ¢ > 1, and the
equivalence of the exponents produced by external noise
and deterministic chaotic fluctuations. We have also
studied several different conserving coupled map models
that break the lattice symmetry other than the one re-
ported here. While it seems plausible to expect that our
arguments hold in all these models, in most of them
correlations either decayed too rapidly or behaved too ir-
regularly in space to permit any firm conclusion about
possible asymptotic power laws to be drawn. In addition,
we investigated G(r) in two-dimensional models that
respect the full lattice symmetry; however, the expected
1/r* decay was too rapid to obtain persuasive numerical
support for the prediction.

Note that the /ocal nature of the chaos which seems to
underlie the similarity of the large-distance properties of
chaotic and nonchaotic phases has a simple interpretation
in terms of the RG: The fixed point governing asymptotic
properties of the system is independent of the presence of
chaos; i.e., the system looks less and less chaotic as one
looks at it on progressively longer length scales. (This is
the absence of “collective chaos” discussed in Refs. [10]
and [11].) To test this idea directly, we studied numeri-
cally the histogram of values of the Fourier amplitude
S(Q=(nn),t) in the chaotic checkerboard phase. We
found that, with or without noise, the width of the histo-
gram decreased like L ~' with increasing system size L,
consistent with the correlation of chaotic fluctuations be-
ing short ranged and so disappearing when averaged over
long length scales.

Standard perturbative RG analysis of the continuum
version of model (1) with external noise [4] shows that, at
least for small coupling constants, the nonlinearities are
all irrelevant, i.e., do not alter the long-distance algebraic
correlations predicted by the linear theory. Though such
analysis need not necessarily provide any information
about the strong-coupling problem where chaos appears,
our results demonstrate that in fact it does: the noisy
linear theory seem to correctly describe the long-distance
behavior of the noisy, and even of the noiseless, chaotic
phase [16]. If, as we suspect, this holds rather generally
[9], then it constitutes a powerful tool for analyzing the
macroscopic properties of conserving chaotic systems.
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