VOLUME 69, NUMBER 24

PHYSICAL REVIEW LETTERS

14 DECEMBER 1992

Controlling Chaos in High Dimensional Systems

Ditza Auerbach, ("’ Celso Grebogi, ("*® Edward Ott,"® and James A. Yorke ®

M Laboratory for Plasma Research, University of Maryland, College Park, Maryland 20742
Opnstitute for Physical Sciences and Technology and Department of Mathematics, University of Maryland,
College Park, Maryland 20742
® Department of Physics and Department of Electrical Engineering, University of Maryland, College Park, Maryland 20742
(Received 29 June 1992)

Recently formulated techniques for controlling chaotic dynamics face a fundamental problem when
the system is high dimensional, and this problem is present even when the chaotic attractor is low dimen-
sional. Here we introduce a procedure for controlling a chaotic time signal of an arbitrarily high dimen-
sional system, without assuming any knowledge of the underlying dynamical equations. Specifically, we
formulate a feedback control that requires modeling the local dynamics of only a single or a few of the

possibly infinite number of phase-space variables.

PACS numbers: 05.45.+b

Feedback controls involving only minute parameter
perturbations in an accessible system parameter have re-
cently received much attention as a means of forcing a
chaotic system to evolve in a prescribed way [1-5]. The
proposed techniques [3,4] suffer from a fundamental limi-
tation when applied to high dimensional physical systems
evolving chaotically on a low dimensional attractor. In
this Letter, we introduce a feedback control mechanism
for controlling such a high, possibly infinite, dimensional
system directly from time series data. We stress that nei-
ther knowledge of the underlying equations of motion nor
a model for them is required.

For a chaotic system whose parameter values are held
fixed, one often observes high dimensional transients that
vanish with time as the dynamics settle down to a lower
dimensional chaotic attractor. The application of even a
minute short-term fluctuation in the parameters can rein-
troduce the higher dimensional transients, rendering it
inappropriate to view the dynamics as low dimensional if
parameters are frequently tuned. Consequently, the most
obvious approach for modeling a system in which an ac-
cessible parameter is to be varied is to follow the evolu-
tion in the entire set of phase-space variables. Imagine a
discrete time n-dimensional system at the nominal pa-
rameter value p =py, possessing an unstable equilibrium
state &, that we wish to stabilize. During the application
of the control, the trajectory is forced to remain in the vi-
cinity of &7, and the local dynamics can be modeled
through the linear relationship

Eiv1—&Er=J& — &)+ Abpi, a)

where &; is the state of the system in its full phase space
at time i, 6p;=p; — po is the value of the parameter per-
turbation applied at time i, J is the local nxn Jacobian
matrix of the underlying map &; +, =F(&;,p) evaluated at
&r and p =p,, and A=6F/8p|;-g,, p=po. The actual
perturbation §p; that should be applied is determined by
a feedback rule which depends linearly on the state &;.
This approach may not be feasible for large n, since it re-
quires the knowledge of all the components of &;, J, and
A. The purpose of this Letter is to describe a simpler ap-
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proach in which a feedback control can be deduced by
modeling the dynamics of only a small number of coordi-
nates.

A chaotic attractor typically has embedded in it a set
of unstable periodic orbits [6,7]. A versatile feedback
control mechanism which involves alternatively choosing
any one of these unstable cycles and then forcing the dy-
namics to follow the chosen orbit through the application
of small external perturbations has been proposed [3],
and successfully implemented in an experimental setting
[1]. In the feedback control of Ref. [3], the instantane-
ous phase-space position of the system is identified, and a
model of the form of Eq. (1) is deduced locally, in the vi-
cinity of the periodic orbit to be stabilized. For cases in
which a chaotic attractor is reconstructed using a time-
delay embedding [8,9], a modification to the form of the
control law of Ref. [3] has been introduced [4] [the
modified law arises due to the presence of an additional
term linear in 8p;—, in Eq. (1), if £ is a time-delay vec-
tor]. Direct application of these methods to high dimen-
sional systems is problematic due to the necessity of
determining an overwhelming amount of information
from the data [10]. The novel aspect of the control
mechanism we introduce here is that it can be implement-
ed directly from time series data, irrespective of the
overall dimension of the phase space.

We first develop the control law for the case of an n-
dimensional system evolving chaotically on an attractor
which has embedded in it, at the nominal parameter
value p=po, an unstable fixed point &, with a one-
dimensional unstable manifold of strength A; (in fact, we
assume only || =1). At the end of the paper, we will
indicate how the control procedure is generalized to un-
stable orbits of period greater than I, and orbits possess-
ing more than one unstable direction. Consider measur-
ing a scalar time series {x;}]=,. If at time i the system is
in the neighborhood of the fixed point &, then its evolu-
tion is well approximated by the linearization, Eq. (1),
whose projection onto the scalar measurement direction is
Xi+1 =P, J(& —&7)+P,Aép;, where P, is the projection
operator of an n-dimensional vector onto the x direction
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(P, is an n-component row vector). By decomposing the
vector &; — & as a sum of the two vectors §,-(3) and 45,-(“) ly-
ing respectively in the stable manifold (contracting direc-
tions) and unstable manifold (expanding direction) of J,
the projection of Eq. (1) onto the x direction can be ex-
pressed as

x,-+]=l|x,'+AX(')6p,~+PX(J—7»11)6[(5), (2)

where A" =P, A, and I is the identity operator. Decom-
posing A=A +A ™ into vectors lying along the con-
tracting and expanding directions of J, the component of
Eq. (1) along the stable manifold of J has the form
S =JE+ AW 8p;. Using this relation, Eq. (2) can be
iterated to obtain an expression for x;+x (k > 1) which is
linear in the previous k parameter perturbations,

Xtk =MXik—1+ Ak 1+ AP Spiri—s
+ - +Ax(k)5p,‘+ﬁ,£k)§,~(s) . (3)

where A =P, (J—10DJI' A for 2=<I/<k, and
RE =P, (J=1I1)I*~!. Notice that the scalar form of
Eq. (3) is an exact specification to linear order of the lo-
cal dynamics in the vicinity of &, along the measurement
direction, in the presence of parameter perturbations. In
contrast with the full phase-space model of Eq. (1), a
dependence on the entire history of the parameter pertur-
bations is introduced in the expansion above. The fact
that the coefficients 4" decrease exponentially for large
! enables control of the dynamics, by utilizing only the
leading k coefficients that will be extracted from time
series data.

The expansion of Eq. (3) holds for an arbitrary mea-
surement x, but it takes on a particularly simple form if
the measurement is made along the unstable direction;
that is, along the direction for which P,v =0 for all vec-
tors v lying in the stable manifold of J. For this special
case, the expansion of Eq. (3) reduces to the relation
Xi+1 =7~|x,-+A)f')6p,v (for notational convenience, the
time coordinate has been translated by k —1 units). In
the typical case where the measurement x has a com-
ponent in the stable manifold, the coordinate along the
unstable direction, u, can be obtained by subtracting
from x components on the stable manifold,

U =x; — (PXA(S)(Spi—l'f‘PXJA (5)6p,<_2
+ o AP I TIAYSp ) PR T
(4)

Rewriting Eq. (3) in terms of the variable u, the dynam-
ics takes on the form u;+, =Mu,~+PxA(“)6p,-, charac-
teristic of a one-dimensional invariant set. The unstable
fixed point can then be controlled by the feedback rule

6p,»=‘-(k1/PxA(“))u,- . (5)

provided P, A 0. A single parameter perturbation ap-
plied according to this exact control law will displace the
trajectory in one time step onto the stable manifold,
u =0, of the fixed point &,. Once on this manifold, the
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trajectory will approach the fixed point at an exponential
rate, typically given by A, the contracting eigenvalue of J
of largest magnitude. Thus, knowledge of the unstable
coordinate u; enables the fixed point to be stabilized by
the application of a single parameter adjustment lasting
only one time step. Subsequent approach to the fixed
point is solely governed by the stable manifold of the un-
controlled dynamics.

In practice, the control law of Eq. (5) cannot in general
be applied exactly, since it may be impossible to deter-
mine the exact values of the coordinate u; and the projec-
tion PXA(“) from measured data. Therefore, we intro-
duce an approximation to the above feedback rule which
is based only on knowledge of A; and the first kg
coefficients A appearing in the expansion of Eq. (3)
(below we describe how to extract these quantities from a
measured time series). From the definition of the A,fj)’s,
the constant coefficients appearing in the control law (5)
can be expressed as

ko )
Ay’ —(kn— _
PXA(u).__Z — +2, (ko ”PXJko IA(J),
j=1M
(6)
1+1
PXJIA(S)___.Zx]l+l—ij(j)_K|1PXA(u)
=1

for | < ko. The k§' approximation to the control law (5)
is obtained as follows: The last term in expression (6) for
PXA(“) is omitted and in addition the expression for u; in
Eq. (4) is truncated after ko+ 1 terms. The magnitude of
the omitted terms decreases exponentially with kg, yield-
ing an approximate feedback rule whose prescribed gains
(the coefficients of x;,6pi—1,...,8pi—k,+1) converge to
the gains of the exact control law of Eq. (5), exponential-
ly fast in ko. One expects the convergence of the con-
trolled trajectory to the fixed point &r to be reduced rela-
tive to the exact control of Eq. (5). Indeed, for large
ko, the convergence is still exponential with rate |,
+0(nko/ko) (see [11] for details). Thus, even though
the control procedure takes only a single direction into
account explicitly, the actual phase-space trajectory in
the full n-dimensional space approaches &, asymptotical-
ly. The multi-dimensional control problem is effectively
reduced to a one-dimensional one.

The minimum value of k¢ that is sufficient for control
depends on the strength of the contraction along the
stable manifold of J. In cases where the stable directions
of the matrix J in Eq. (1) are very strongly contracting
(the experiment of Ref. [1] exhibits this behavior), a
ko=1 approximation may be sufficient for controlling the
system. We emphasize that, even in this case, the con-
sideration of the high dimensional dynamics is still essen-
tial in the proper evaluation of AW,

We now describe how to implement the control pro-
cedure for an unstable fixed point of a d-dimensional
chaotic attractor. First, a scalar time series output from
an experiment at a fixed parameter value p =pg is em-
bedded in a D-dimensional space (D > d is sufficient [9]),
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and used to extract the periodic orbit along with its un-
stable eigenvalue according to the method of Ref. [7].
Next, the 49”s must be obtained experimentally; a tra-
jectory at the nominal parameter value po is generated,
and one waits until it enters a small neighborhood of the
fixed point &; ie., a delay vector in the measurement
variable x embedded in D > d dimensions is close to the
origin. Such a trajectory remains in the vicinity (the
linear regime) of the fixed point, for D time steps, and at
each successive iterate j the magnitude of & }‘) decreases
relative to 5}"). For a trajectory which approaches the
fixed Point sufficiently closely, the condition |E9)]
<<|.§,-(" | will hold at time i, which is several time steps
after the initial approach to &;. At time i/, the parameter
is perturbed by an arbitrary amount §p;, smaller in mag-
nitude than a prescribed value 8pmax (small enough so
that nonlinearities can be ignored) and switched back to
its nominal value pg after a single iteration. In the pres-
ence of noise, one would repeat this procedure with
several close approaches, each time making a different
parameter perturbation &p;, and then determine the
least-squares solution A to a set of equations each hav-
ing the form of Eq. (2). The remainder term R{’&®
appearing in this equation can be omitted from the fit
since || «|&™|. Using the value of A, previously
determined at p =po, and the measurements of x, the
value of 4" can be determined directly from Eq. (2).

The coefficients Ax("), for kK > 1 but not too large, can
be determined by finding the least-squares solution to a
sef of linear equations of the form x;+x =Aixj+k—1
+A,§")6pi, where x;+x is the measurement k time steps
after the parameter perturbation was switched on. We
note, however, that in this method nonlinear terms can
spoil the determination of AKX if k is too large, since in k
time steps the uncontrolled trajectory may escape the
neighborhood of &, in which a linear approximation is
valid. In order to determine Ax(") for large k, we utilize
all the AY”s with j <k determined previously, in order
to hold the trajectory within the linear regime of &, for k
iterations. This is accomplished by choosing the parame-
ter perturbations ép;+1,...,0p;+k—1 according to the
(k — 1)-order approximation to the control law of Eq. (5),
and then determining A% through the least-squares
solution of a set of linear equations, each having the form
of Eq. (3) (neglecting the term involving R&¥’). In gen-
eral, estimation of the Ax(f)’s can be refined by utilizing a
control procedure based on the approximate AY”s in con-
junction with the least-squares determination described
above [11].

The approximation to the exact control law of E(K (5)
is constructed by transforming the measured AYs,
< ko, to the quantities appearing on the left-hand side of
the system of equations in Eq. (6), within the approxima-
tion outlined above. A time series is then generated at
the nominal parameter value po until it falls near x =0.
At that time, the control is turned on and kept on as long
as the required parameter perturbations are less than
some prescribed value 8pmax, otherwise, the parameter is

set back to po until the trajectory falls near x =0 again.
Even though x; may be near x=P,(£ —¢&;) =0, the ob-
served x;4+, may be large, in the case where the full vec-
tor &; is far from &j; this situation may occur since we as-
sume only knowledge of the coordinate in the x direction.
When the trajectory falls near &y, the x and p values will
converge exponentially in time provided the koth approxi-
mation to Eq. (5) is sufficient. In cases where the num-
ber kg of coefficients Ax(f) that can be extracted from the
data is insufficient for control, approximation techniques
can be applied to extend the sequence of coefficients to
k > ko. Possible estimation methods will be discussed in
a future publication [11]. It is important to note that the
overall dimension of the phase space has no direct bear-
ing either on the actual control procedure or on the
difficulty of calculating the 4.Y’s.

We now examine how experimental errors are pro-
pagated in time once the feedback control is turned on.
Assume that at time i, one observes x; =x,~°+ ni, where x,~0
is the x value of the true system state and 7; is an un-
correlated noise term with (n;)=0. From the dynamics
along the unstable coordinate u defined in Eq. (4) and the
feedback rule in Eq. (5), one finds |xi+|=<|x%:l
+ AN /P A ey, Where the noise distribution is
bounded by 7max. A large noise term may on occasion
drive the dynamics out of the neighborhood of the fixed
point where the dynamics is linear, and one must wait for
the trajectory to return to the vicinity of &, in order to
reapply the control. In the presence of smaller errors,
controlling the dynamics to always remain close to the
fixed point is still possible. A similar result follows in the
presence of noise originating in the time evolution of the
system, as well as observational noise [11].

We illustrate our control procedure by applying it to
the time evolution of a mechanical system composed of
two connected rods known as the kicked double rotor
[12]. By relating the state of the system after consecutive
kicks of the system, the time development can be reduced
to a four-dimensional dissipative mapping of the form
[13] X,~+,=L|Y,-+X,- and Y,-+|=L2Y,-+pG(Xi+|),
where X =(6,,0,)T are the two angular position coordi-
nates (0=<6;<2n), Y=(y,,y2)7T are the corresponding
angular velocities, and G(X) is a nonlinear function. L,
and L, are both constant matrices which involve the fric-
tion coefficients and moments of inertia of the rotor. The
magnitude of the kick is p, which we shall utilize as the
control parameter. At the constant nominal parameter
value of pp=6.85, and the other parameters as in Ref.
[13], the system possesses a chaotic attractor. It is a
two-piece attractor whose underlying periodic orbits con-
sist only of even periods.

We focus on stabilizing a particular period-two cycle.
Using a scalar time series of 6;, the period-two orbit and
its expanding eigenvalue are extracted. By embedding a
measured scalar time series of length 10* in three dimen-
sions, it was found that all the period-two orbits possess a
single unstable direction. We choose to control the orbit
with A; =2.761 and which alternatively visits the points
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FIG. 1. The time variation of the measured signal x=6,
—2.113 (every second iterate is shown) during the feedback
control of a period-two orbit of the rotor (p9=6.85, Gpmax
=0.05, and ko=>5). The arrow indicates the time step at which

perturbations were initiated.

with 8;=2.113 and 6, =4.170. For the former of these
points, we found A% =—0.506, 1.437, —0.554, 0.117,
0.017 for i=1,...,5, respectively. These values were
evaluated directly from a time series of 6,, by measuring
only every second time step, thus viewing the period-two
orbit as a fixed point of the mapping composed twice.
Utilizing the explicit form of the dynamical equations for
the rotor, the 4’s calculated according to the prescrip-
tion following Eq. (3) agree closely with those extracted
from the data. In Fig. 1, a typical time evolution of the
measured value of x=6; —2.113 is shown for a feedback
control based on Eq. (5) using ko=35 (only even iterates
are plotted). A portion of the uncontrolled chaotic tra-
jectory at po=6.85 is also shown, corresponding to i <O0.
The time at which the trajectory first enters a neighbor-
hood of radius 10 2 of the periodic point (8; =2.113) is
denoted as i=0. The parameter perturbations (8pmax
=0.05) were initiated at that time and the measured de-
viations x are seen to quickly converge to zero in Fig. 1.
All the other phase-space coordinates also converged rap-
idly to the periodic orbit. In addition, the associated pa-
rameter perturbations decay to zero on the same time
scale. Typically, a feedback which takes into account less
of the As, ie., ko=4 in Eq. (5), was inadequate in
controlling the dynamics around the period-two orbit
from the measured values of 6, but may be sufficient for
a different choice of measurement direction [11].

Cycles of order g may be controlled either by control-
ling the fixed points of the gth iterate of the dynamics (as
was carried out above for the kicked double rotor with
g =2) or by applying a control of the form of Eq. (5) at
each cycle point. In the latter alternative, it is necessary
to determine a set of .4s for each of the q cycle points.
For large g, this iterative fit procedure leads to improved
control compared with carrying out a single fit for the gth
iterate of the cycle, especially in the presence of noise
[13]. The advantage of iterative fits for chaotic dynamics
has been previously noted [7].

The control procedure can also be generalized to stabi-
lize a periodic orbit with more than one local expanding
direction. For such cases, the model of Eq. (3) would
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have coefficients 4% which grow exponentially with j
(the additional expanding directions contribute to these
coefficients). In order to produce a convergent expansion
which can be truncated, one must resort to embedding
the scalar time series in a space whose dimension is equal
to that of the unstable manifold. The corresponding form
of Eq. (3) in the presence of more than one unstable ei-
genvalue will be given elsewhere [11]. In practice, there
may be cases in which it is advantageous to carry out the
feedback control by embedding a time series in a space
whose dimension is somewhat higher than that of the di-
mension of the unstable manifold. In this way, the
minimal ko at which the multidimensional generalization
of Eq. (3) can be truncated may be reduced, without des-
troying control [11]. In general, there is an interplay be-
tween the dimension of the embedding space that is em-
ployed and the extent of the history that need be con-
sidered in order to achieve control.
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