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Mass Ratios of the Light Quarks
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We derive a consistent set of light quark mass ratios which are compatible with the available con-
straints of chiral symmetry treated to next-to-leading order. Also required as input is resonance satura-
tion of a set of low-energy amplitudes, in particular for the pion and kaon electromagnetic mass
difference. The results (mz +m„) /m, =1/15.5, (mz —m„)/m, =1/29 are modestly difl'erent from previ-

ous values, and resolve the long-standing puzzle of the g 3z decay rate.

PACS numbers: 14.80.Dq, 11.30.Rd, 11.40.Fy, 13.40.Dk

m„+ my rn„2

2
=0.075,

mgm, +rn

md mu

m, —m

2 2 2 ~ 2
m~o rn~+ m o+m +

=0.023 '

mg —m

m 1

26'
md mu

m,

my —m„ =0.27,
44 ' my+ rn„

where m =(m„+my)/2. Since these results are derived

using SU(3) symmetry, one should anticipate that they
are valid to about 30%. Various authors have investigat-
ed second-order eA'ects (see below). In this paper we dis-

The masses of the u, d, s quarks are parameters in the
Lagrangian of QCD. These small QCD (or current
quark) masses are not to be identified with inertial (or
constituent quark) masses and in fact generate only a
small contribution to most physical quantities. Indeed we

expect that the world would be largely unchanged if these

QCD masses were to vanish. This feature poses special
obstacles which stand in the way of any attempt to mea-
sure the masses. In practice, one generally uses symme-

try relations between observables as a measure of mass
eff'ects —if a symmetry requires that two amplitudes are
equal when the quarks are either massless (e.g. , chiral
symmetry) or identical in mass [e.g. , isospin or flavor

SU(3) symmetry], then the effect of nonzero mass or of
mass splittings can be treated as a perturbation and the
size of deviations from the symmetry limit can be used as
a measure of the mass. By taking ratios of such devia-

tions, any reduced matrix element often drops out, and

one is left with an experimental measurement of the ratio
of the quark masses themselves.

To first order in the quark masses, the results are well

known [1,2]. On account of Goldstone's theorem applied
to the chiral symmetry of QCD, pion and kaon masses

must themselves vanish if the quark masses were set to
zero [i.e., if chiral SU(3)L SSU(3)tt symmetry were ex-

act]. A linear expansion in quark mass then yields

(mtro mt'+ )QM = (mtro mt'+ )EXPT2

—(m„o —m~+ )EM. (2)

The same combination of quark masses is derived from
the ri 3tr decay amplitude [8],

cuss further the implications due to meson masses and

propose a set of quark mass ratios valid at that order.
Because the low-energy meson sector is the most tightly
constrained and best understood, we restrict our treat-
ment to this arena.

At second order in the quark masses, the analysis in-

volves new reduced matrix elements, which have been

completely classified within the context of the QCD
eA'ective chiral Lagrangian by Gasser and Leutwyler [3]
and others [4,5], and which are described by the chiral

coefficients L; (we will need only L7 and Li4). However,

there emerges a fascinating subtlety [6]—via SU(3) sym-

metry one cannot distinguish the masses (m„,mq, m, )
from the set of masses m„=m„+X,mmmm„plus cyclic(X)

permutations, for arbitrary X,. This reparametrization in-

variance [5-7] arises because both m; and m; have the

same SU(3) properties, so that either representation can

be used in an SU(3) analysis to obtain the same physics,

provided one allows the reduced matrix elements to
change correspondingly. (For example, L7 LP L7
+2 F, /3213u with Bu= —(O~iltiir~0). ) This X invariance,

of course, hinders attempts to measure quark mass ratios
via symmetry relations.

There exist at least four separate constraints on quark
mass ratios which have been analyzed to second order in

the quark masses. Such calculations involve one loop

chiral corrections, plus tree level contributions from the
O(E") chiral Lagrangian. There are two sets of observ-

ables which are independent of the chiral coefficients.

One utilizes the meson masses with electromagnetic self-

energy eA'ects removed [3]:
2 2
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mx+ )gM =2m'(7. 0 MeV), (4)

of Eq. (3) is equal to 2.35x10, and consequently that
the kaon mass diA'erence must be given by

where A(so) indicates the amplitude at the center of the
3z Dalitz plot and h„3 =0.5 is the chiral correction at
O(F. ) which includes the effects of loop diagrams. [This
result properly includes the effect of rl-rl' mixing (we

disagree with Ref. [9] which claims otherwise). All esti-

mates of electromagnetic contributions put them at a lev-

el which is negligible. ] Of course, consistency of the

chiral expansion demands the numerical equality of both
expressions. Use of the experimental rate I (rl z+-
z z ) =0.28 ~ 0.03 keV implies that the right-hand side

to which we will return below. (There is also a related
constraint from isospin breaking in K13 decays [10].
While it is consistent with our analysis, we do not include
it because the error bars are currently too large. ) Note
that the combination of masses in Eqs. (2) and (3) is un-

changed under the reparametrization transformation.
A third observable can be obtained [5] via analysis of

anomalous U(1)~ Ward identities and the heavy quark
multipole expansion [11,12] to relate the transitions
y' J/yx and y' J/yg to z and ri matrix elements

of F„„F""'.Working to second order in the chiral expan-
sion one finds

md —m„m, +m 4 (0~FF~~O) F, Firmly F,m, — 4Li4, z z)1+ (mn m~ )
md+mu m, —m 3~3 (O~FF~ri) Fn F„m,

=0.51 1+
2

(m„—m, )
4L )4

where L ~4 is a chiral coefficient related to the energy vari-

ation of the matrix elements of F„"„F""'and 8GMo
= —0.06. While there may be some question about the
use of the heavy quark methodology at the charm quark
mass and/or the presence of possible higher-order opera-
tors [5,12, 13], we will include this result in our analysis,

as it is quite compatible with the other constraints. [It is

also special because it goes beyond SU(3) symmetry and

hence is not subject to the reparametrization transforma-
tion. ] Finally, one has also the mass ratio [3]

2m m; [I+~ ],
m, +m mg

(6)
32'= —0.43 — (mx —m, ),

where L7 is one of the chiral coefficients and 6 repre-
sents the O(F. ) chiral correction. This relation changes
with the reparametrization transformation.

The above relations are derived to be valid to second
order. The lowest-order relation quoted in the introduc-
tion can be obtained from Eqs. (2) and (6) with 5 =0
and by use of Dashen's theorem [14]. This latter refers
to a relation between pion and kaon electromagnetic mass
splitting, (miro —mls+)EM=m, 0 —m, +, which is valid to
zeroth order in the quark masses. When working beyond
leading order, only the ri 3n constraint, Eq. (3), can be
applied without further work. However, it has not been
common to use this relationship, but instead to focus on
the pseudoscalar mass relations, Eqs. (2) and (6). In this
regard, for example, one determination [3,71 continues to
use Dashen's theorem at the next-to-leading order, and to
employ the saturation of a sum rule for L7 by the g' reso-
nance. This combination, when used in Eqs. (2) and (6),

gives mass ratios essentially the same as the lowest-order

results, Eq. (1). However, since Dashen's theorem yields

(mxo —m„+)gM =2m'(5. 3 MeV) instead of the value

quoted in Eq. (4), there has persisted an inconsistency
with the value obtained from rl decay, and the rl 3z
rate has been considered to be a puzzling failure of chiral
perturbation theory. Below we explore the physics behind

the chiral mass relations and show that when one employs
resonance saturation for all ingredients [L7, L~4, and

(mx. o
—m„+)EM] all constraints are compatible. A con-

sistent set of mass ratios emerges, and the ri 3z rate is

no longer a problem.
In the past five years it has become clear that reso-

nance saturation yields a remarkably accurate represen-
tation of the coefficient in chiral Lagrangians [3,15]. The
physics behind this result is that the coefficients L;
parametrize the energy variation of low-energy matrix
elements, which are known to be dominated by nearby
resonance poles. In this way, the chiral effective La-
grangian methodology represents a '90s framework for
the application of '60s insights on low-energy hadron

physics, and this success motivates us to apply this tech-
nique to the analysis of pseudoscalar meson masses.

Both L7 and L~4 are generated by the g', as indicated

by Leutwyler's analysis [7] and that of Ref. [5], produc-
ing L7=(—0.4~0.2)x10 L~4=(2.3~1.1)x10
The case of L7 has some potential contamination by a z'
resonance [13], and is exceptional in that it is the first
time resonance saturation that has been applied to a pa-
rameter which changes under the SU(3) reparametriza-
tion transformation. However, if we allow some modest
error bars on the quoted values, the inclusion of g' will

suffice for our purposes.
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It has long been known that use of vector meson dominated form factors in the Born diagrams yields an accurate es-

timation of the electromagnetic pion mass splitting [14-16],and below we extend this result in order to calculate the

kaon electromagnetic mass difference. In the process of doing so, we find that the formalism of Socolow [16] is incon-

sistent with the low-energy constraints of chiral symmetry and does not reduce to that of Das et al. [17] in the soft pion

limit. We have reanalyzed this problem and will present this now consistent formalism in a separate publication [18].
The resulting electromagnetic mass shifts are given by

F„' " (2ir)4 q'[(q+p)' —m,'] m2 q2 2 mz qz

x [p'q' —(p q)']+3q'(q'+2p q)
Fp
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—

q
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where we have used the Weinberg sum rules [19]

F2 F2 Fz 2 F2+ ] F2 FK2

F2m 2 F2m 2

2 2 ] 2 2 2 2
—, F~ m~ + 3 F& m&

=FK„mK„.

(8)

The mass shifts are finite when Eqs. (8) are obeyed. To
lowest order in p, these results have also been obtained

by Ecker ei ai. [151. Evaluation of Eq. (7) yields

dm, =2m„(5.6 MeV) when the Kawarabayashi-Suzuki-

Fayyazuddin-Riazuddin (KSRF) relation [20] (m~
=2m~ ) is used and hm, =2m, (6.3 MeV) when the

physical axial-vector meson mass is used [Expt =2m, (4.6
MeV)]. The formalism automatically respects Dashen's

theorem at lowest order, but predicts a significant viola

tion in the full calculation, with i.e.,

md+mu =0.061,
m, +m ." =0036'

m, —m

result we conclude that the ri 3z constraint should not

be discarded or regarded as a problem. Both ri 3z and

the kaon mass splitting yield essentially identical values

for the md —m„mass diA'erence, once electromagnetic
corrections are treated beyond leading order.

The chiral constraints, combined with the values of L7,
L~4, and (dmx)EM which were obtained through reso-

nance saturation, are given in Table I. From these four

inputs there exist two independent mass ratios, and we

find that if one uses L7= —0.3x10 and Li4=1.2
X10 —within the ranges quoted above —then a con-

sistent set of values is obtained:

(mXo —mir+ )pM
2 2

pEM= 2 2
=1.7 (1.78),

(m,2o —m„2+ )EM

m 1

m, 31'
md mu 1 md mu =0.59 .

m, 29
'

md+m„
(10)

where the first number uses KSRF masses and the second

experimental axial-vector meson masses. (If we had

blindly followed Socolow's approach [16] we would have

obtained a very similar value, pEM =1.85.) The dominant

SU(3) breaking in Eq. (9) arises from the kaon propaga-
tor in the Born diagrams. Since these should give the

bulk of the electromagnetic mass diff'erence [21], the

violation of Dashen's theorem appears impossible to avoid

[22]. The use of ppM =1.8+ 0.1 together with the physi-

cal pion mass difference produces (mzo —
mx+)OM

2 2

=2m'(6. 3 ~0.1 MeV), which is within 10% of the value

predicted from the g —3z relation, Eq. (4). From this

Compared to the lowest-order numbers [Eq. (1)l this
amounts to a 20% decrease in m/m, and a 50% increase
in (md —m, )/m, . The latter increase is to a large extent
driven by Eq. (3) and should be a general feature of any

set of mass ratios which is consistent with the g 3z
constraint.

The chiral corrections to lowest-order relations in-

volved in g 3z and in Dashen's theorem are rather
large. However, this does not necessarily mean that the
chir al expansion is breaking down. Similarly, large
corrections have been found in I =0 zz scattering and in

K irx/v [23] decays where, however, after accounting
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TABLE I. Numerical values of quark mass ratios obtained from various sources. Note that
only t~o of these are independent.

Mass ratio Value Source

mu 2m

m, —m m, +m
2. 11 x 10 Meson masses and (Amp)EM

mu 2m

m, —m m, +m
2.35 x 10

md —m„m, +m
mu+mu m, —m

0.67 ~ 0.16 y' 1/y+tro(rt) and L~4

2m

m, +m
0.067+ 0.012 Meson masses and L7

for first-order corrections the results display a remarkable
consistency. In the present problem, sizable corrections
are required to bring the lowest-order results for htrttr

and 1(ri 3tr) into agreement. It is encouraging that
the physics behind these corrections is simple, and that
various methods give a consistent extraction of the quark
mass ratios.

In summary, aside from the ratio given from the

g 3z amplitude, there is no analysis which uses sym-
metries alone, free of any additional assumptions, to ex-
tract quark masses at next-to-leading order. In previous
treatments the constraints of Eqs. (3) and (5) were taken
less seriously. Rather, Eqs. (2) and (6) were used plus
the extra inputs of Dashen's theory beyond lowest order
and an estimate of L7. However, this leads to problems
with ri 3tr. Here we have used the input of resonance
saturation of various low-energy amplitudes in order to
produce a consistent set of masses. A crucial requirement
for obtaining this consistency is the violation of Dashen's
theorem, i.e., a modification to the kaon electromagnetic
mass shift beyond lowest order, which emerges from the
consideration of the Born diagrams. The new mass
values, Eq. (10), provide a plausible resolution to the
long-standing problem of the ri 3tr decay rate within

chiral perturbation theory.
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