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We show that a lattice model for induced lattice QCD which was recently proposed by Kazakov and
Migdal has a Z~ gauge symmetry which, in the strong coupling phase, results in a local con6nement
where only color singlets are allowed to propagate along links and all Wilson loops for nonsinglets
average to zero. We argue that if this model is to give QCD in its continuum limit, it must have a
phase transition. We give arguments to support the presence of such a phase transition.

PACS numbers: 12.38eGc

The large N expansion is one of the few analytical tools
available for gauge theories in the strong coupling regime.
However, in greater than two dimensions the solution of
even the leading, N = oo, order of the expansion has not
been found. Recently, an intriguing new approach to this
problem has been proposed by Kazakov and Migdal [1,
2]. They have suggested using a lattice gauge model in
which the Yang-Mills interaction is induced by a heavy
scalar field in the adjoint representation of SU(N). The
action is

S = ) NTr~ m()C (x)—) C(x)U„(x)C(x+lJ,)Ut(x) ~,p )

theory described by (1) has unusual properties which are
not shared by the usual Wilson formulation of lattice
QCD. This is a result of the fact that the induced action
(3) for the gauge fields depends only on the modulus
of the terms TrU(I') and, unlike the Wilson theory, is
insensitive to their phases. This is of course connected
with the fact that, since the scalar field transforms in the
adjoint representation of SU(N), the original action (1)
has both a U and a Ut on each link. The action has
two local gauge symmetries: The first one is usual local
SU(N) which acts on the both the scalar and gauge field

as left and right group multiplication,

U„(x) ~ A(x)U„(x)A '(x+ p,),
(4)

where the scalar C'(x) lives on lattice sites and the link
operator U„(x) is the usual SU(N)-group-element-valued
lattice gauge field (in the fundamental representation).
Integrating over the scalar field C',

DUDO exp( —S) fDUexp[ S; e(U]), — „

results in the induced gauge action

1 .JTrU[I']f.
l[I] Ã '

(2)

where l [I'] is the length of the loop I', U[I'] is the ordered
product of link operators along I', and the summation
is over all closed loops. It was argued in [1] that in the
continuum limit this action is equivalent to the ordinary
Yang-Mills action with the coupling constant depending
on the scalar mass and ultraviolet cutoffe Indeed, for an
elementary plaquette, 0, TrU[ ] N —TrF /2+
where F is the continuum field strength and S[U)
const+ TrF /4+ in the naive continuum limit. Fur-
thermore, Kazakov and Migdal [1] showed that, when
the gauge field is integrated first, one obtains an effective
matrix model for the field C'(x) which can be analyzed at
large N and behaves like a master field in that its fluctu-
ations are frozen in the large N limit. They conjectured
that O(x) is the correct master field for QCD.

In this Letter we shall point out that the lattice gauge

C(x) ~ A(x)O(x)A '(x), A(x) c SU(N),

and whose group elements are defined on the sites x. The
second local symmetry is a hidden ZN symmetry which
is not seen in the weak coupling continuum limit and
which is also absent in the standard Wilson formulation
of lattice QCD:

U„(x) ~ Z„(x)U„(x)Z„(x)c Zpg,

where Z)v is the center of SU(N) and the local gauge
group elements are defined on links. We stress that this
symmetry will appear for any induced QCD if the original
matter fields are invariant under the action of the center
of the gauge group (as is the adjoint representation which
we use here).

The properties of the strong coupling (confining) phase
in a theory with this additional local symmetry dier
from those of ordinary Wilson lattice QCD—in some
sense confinement is stronger and we call the strong cou-

pling phase local confinement. Let us consider the vac-
uum average of the Wilson line operator in the funda-

mental representation

IP(U) = (TxP expl i Aedxe
~

= (Tx U(p)) .
c

(6)

Using the local Ziv symmetry U(p) ~ e2 '"«~~U(p)
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and assuming Z~ invariance of the ground state we get
W(C) = 0 for any contour C with nonzero area. A non-

zero result can only be obtained when in a Wilson loop
or array of Wilson loops, either there is an equal num-

ber of U and Ut factors p [ U(p) Ut(p) ] or there
are "baryon" factors Q, U(p) for every link. Thus we

see that local Z~ symmetry prohibits the propagation of
unscreened color along the links —the only possible type
of excitation in this theory is "locally" white objects—
contrary to Wilson QCD where confinement was not so
restrictive and the Wilson line behaves as exp[ —kA(C)]
with string tension k. One can say that local Ziv sym-

metry makes the string tension undefined.

We also note that the Ziv fiuxons [3] whose contribu-
tions are relevant to the Wilson theory are gauge artifacts
in the present model with local Ziv symmetry. Indeed,
the flux through a plaquette is defined modulo elements
of the center of the group —due to the local Ziv symme-
try one can change the product Q && U(p) by the phase
factor exp(2vnn jN) E Ziv.

The strong coupling phase of this theory exhibits local
confinement. An interesting question is whether there
can be a phase transition to a conventional confining
phase or even a confinement-deconfinement phase tran-
sition in this theory. In usual lattice gauge theory the
latter transition [4] is thought to occur at some value
of the gauge coupling when the number of links N~

in one of the Euclidean directions is finite. It is con-
nected with spontaneous breaking of a global Ziv symme-
try and the appearance of a nonzero vacuum expectation
value of the relevant order parameter —the Polyakov line

(L) = (Trg~ 'i U(l)). In the confining phase (L) = 0;
in the deconfined phase there are N degenerate states
(global Ziv is broken) and (L) c Ziv.

However, in our case besides the usual global Z~ sym-
metry we also have a local Ziv which will guarantee that
(L) = 0. A local gauge symmetry cannot be sponta-
neously broken [5] and whether we can obtain a Wil-
son QCD-like phase of this theory and a confinement-
deconfinement transition within that phase is a subtle
question. This question is an important one for the

Kazakov-Migdal model and for all induced QCD mod-

els where one starts with the action without any explicit
symmetry breaking terms.

To better understand this issue, consider the following
model of lattice QCD with the gauge group SU(X) and
with an action [6]

S[U] = -) -
~ P Re T U( ) + —

]
T U(o)]' ~,

2A

where & are fundamental plaquettes. The first term is

the conventional Wilson action and the second term is

the local Z~ symmetric term for elementary plaquettes
which appears in (3). The Wilson term breaks the local

Ziv symmetry explicitly. This theory was considered in

[7] in the limit N ~ oo where the possibility of phase
transitions between the confining phase and local confin-

ing phase (it was called the "absence of quarks" phase)
was discussed. Such a phase transition in a somewhat
diferent theory which also has an additional local Ziv

symmetry was discussed in [8]. In fact in the early 1980s
there were several papers discussing models with a local
Ziv symmetry [9].

The P —+ 0 limit of (7) has local Ziv symmetry and
can be regarded as a toy version of the Migdal-Kazakov
model with the identification A = 4mso. In the strong
coupling (large A) limit it is a locally confining theory.
In its weak coupling limit it resembles continuum QCD
in the sense that it produces the correct naive continuum
limit. At least for %=2 this model is known to have a
phase transition at a critical value of A when P vanishes

[7—9]. An interesting question is the connection of this
phase transition to confinement. One may speculate that
for A ( A, the Ziv symmetry is realized in a Higgs phase
and the physical properties of that phase resemble those
of Wilson's lattice QCD. For the purpose of studying such
a Higgs phase we temporarily ignore the fact that this
local symmetry cannot be broken at finite N. We shall
later define a generalization of the fundamental Wilson
loop which avoids the problem that the expectation value

of the ordinary Wilson loops all vanish.
To identify the Higgs field, we use a Gaussian trans-

formation to write the partition function as

Z = DU exp ) P Re TrU(&) + —]TrU(&)
l 2A )

DUD/ exp) [
—2A]p(O)] + P(CI)TrU( ) + Pi(CI)TrUi(&) +2PARe P( )]. (8)

Here P(&) is a scalar field which lives on plaquettes. It is a singlet under the gauge transformation in (4). The local
Ziv transformations (5) act on links. P( ) transforms as

P(O) ~ P(U) (Ziv)
links' bO

where + depends on the orientation of the link in the boundary 6 of . The Wilson term in (7) results in a constant
external field for P( ) in (8) which breaks local Ziv explicitly.

3436



VOLUME 69, NUMBER 24 PH YSICAL REVI EW LETTERS 14 DECEM BER 1992

We wish to investigate the possibility that the local Z~ symmetry is realized in a Higgs phase. To this end we
consider the effective action for the Higgs field which is obtained by integrating the gauge fields in (8),

Vee ——) ]22]e)( )] —2))A Re2)(a)] —n)f )2lT exp ) ]et(ej)TeU(e2) P P~(a)TLTe~(a)]
0 0

Note that the integral is just the partition function of conventional @CD with a position-dependent coupling constant
given by 1/gz P(&).

For small P we can use the conventional strong coupling expansion to evaluate S,ff.

S,ff(Cl) = —ln DU exp ) 2 Re/(&)TrU(&)

= ):4(o)4(o')
~~(~) ~~.(~,)

ff +"

= —) .[(TrU(o)TrU'(o')) —(T U(o))(TrU(~'))]4(]:])4( ') +"
ooi

= —) 14(]:])I'+

V'ff[4] = 2AI@l' —I@l'+" (12)

which exhibits the typical behavior of a phase transition
to a Higgs phase at A = 1/2. This suggests that for large
A this model exists in a locally confining phase and that
at some critical value A, of A there is a phase transition
which we conjecture is a conventional confining phase
resembling the Wilson lattice /CD.

There is another way to demonstrate that for small A

one can get the nonzero vacuum expectation value for
the master field P(O). Asymptotically, when P is large,
the logarithm of the integral in (10) is bounded using the
triangle inequality,

dU exp) (2RePTrU) & expl ) 2[PI
I

dU
0 &o

=e»l ).2]PI) (»)
( o

so that for large lgl,

S.ff = ) .[2Aly( )I' —2ly( )I —2pARep(a)]. (14)

where the averaging ( ) is done at P = 0; i.e. , it is
simple integration f DU with zero action. To obtain the
leading term above note that (TrU(a)) = 0 and that
(TrU(&)TrUt(&')) = 6oo . Higher-order terms depend
on either higher powers of lgl or on PN and on Pt
Terms such as P+ appear since the efFective action is in-
variant only under Z~ but not under U(1). "Gradient"
terms appear at order Ps due to a term in the effective
action which is the product of P over the six plaquettes
on the face of any cube. Such a product is invariant un-
der local Z~. Note that higher-order terms in lgl will

have positive signs and the potential appears not to be
bounded from below. Therefore, this expansion is good
only for small lgl. If we assume that the expansion has
some nonzero radius of convergence the effective poten-
tial for P in the small P approximation is (for P = 0)

The efFective potential is extremized by the configuration

p = p/2+ sgn((]]))/2A. When p ( 1/A there are two
solutions which are degenerate at P = 0. This nontrivial
solution is reliable for small A since the estimate of the
effective potential is valid for large P. The nature of the
solution changes when the external field p ) 1/A. Note
that our results are in qualitative agreement with the
analysis [7].

It is unclear how to generalize these arguments to the
case of the induced action (3) S~„d(U) where we have the
sum of all possible closed paths, not only the minimal
path as in our toy model. One option is to consider the
sum of different master fields Pr (analogous to a string
field) and if even one of them has a nonzero expecta-
tion value, the local ZN symmetry may be realized in
the Higgs mode. It is easy to see that for each mas-

ter field Pr the effective coupling Ai ——t[I']m& and~t[rj

the leading quadratic term in the effective action is like

Qz[2A(I') —1]lg(I') lz. If one decreases mo, it will be the
coupling constant corresponding to the smallest loop, i.e. ,

Ao, which becomes smaller than 1/2 first. One can imag-
ine that if all of the other coupling constants are larger
than the corresponding critical values the effective theory
will be the Wilson theory with the fundamental plaquette
action.

We believe that one of the principal questions about
induced @CD with local ZN symmetry is whether there
is a weak coupling phase with ordinary confinement and
an area law for Wilson loops. In this paper we have spec-
ulated about such a possibility based on the assumption
that the Higgs phase for our auxiliary model is equiva-
lent to a confinement phase. To better understand how
in the Higgs phase for P one can get an area law for Wil-
son loops let us consider the generalization of the usual
Wilson loop,

we(c) = (w(c) y(o)) .

aqA(c)
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We have introduced this "filled" Wilson line in which
we preserve the local Z~ symmetry by introducing the
product of factors P( ) for each plaquette in the interior
of the contour C. Order parameters of this kind have
been discussed in somewhat different contexts in Refs.
[8] and [10].

The filled Wilson loop operator has a nonzero expec-
tation value. If in fact there is a phase transition from
a locally confining to a confining phase, we expect a dis-
continuity in the behavior of the filled Wilson loop at the
critical point. Now one can see that if the field P(&) fiuc-
tuates about a nonzero value P (due to Elitzur's theorem
this is only possible with appropriate gauge fixing) the
filled Wilson loop is approximately given by

W~(C) exp[A(C) ing](W(C))& &. (16)

In this phase, the behavior of the Wilson loop operator is

approximately like that of the usual Wilson formulation
of lattice @CD.

In this paper we have pointed out an important prob-
lem with the scenario of induced @CD which has been
proposed by Kazakov and Migdal, namely, the presence
of an extra Z~ gauge symmetry which forces the expecta-
tion values of ordinary Wilson loops to vanish. We have
presented two possible solutions to this problem. The
first is the possibility of a phase transition to a phase in
which the Z~ symmetry is realized in a Higgs mode. The
second is the use of an order parameter alternative to the
Wilson loop which we call the filled Wilson loop. The lat-
ter has a nonvanishing expectation value and reduces to
the ordinary Wilson loop in the naive continuum limit.
Such filled Wilson loops form a natural class of observ-
ables for models with Z& gauge symmetry.

It is interesting to consider whether the phase tran-
sition found by Kazakov and Migdal which occurs at
m&

——2D is related to the phase transition between the
local confinement and confinement phases so that the
strong coupling phase corresponds to local confinement
with unbroken Z~ and the weak coupling phase corre-
sponds to restoration of the area law and (some kind

of) spontaneous breaking of Ziv symmetry [Higgs phase
for P(H) field]. It is very natural to conjecture that the
gap in the eigenvalue distribution function p(p) is pro-
portional to some inverse power of the string tension o.'.
Then in a weak coupling phase the gap, as well as o.',
is nonzero and one recovers the area law. However, in

the strong coupling case the gap disappears and string
tension diverges o,' —+ oo, which means that we are in a
local confinement phase. In a future publication we shall
present the results of more detailed investigations.
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