
VOLUME 69, NUMBER 24 PH YSICAL REVI EW LETTERS 14 DECEM BER 1992

Vacuum Polarization and the Electric Charge of the Positron
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We show that higher-order vacuum polarization would contribute a measurable net charge to
atoms, if the charges of electrons and positrons do not balance precisely. We obtain the limit

~Q, + q;~ & 10 ' e for the sum of the charges of electron and positron. This also constitutes a new
bound on certain violations of PCT invariance.
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In a recent Letter [1] Hughes and Deutch discussed
the possibility that the charges of positrons and antipro-
tons may not be exactly opposite to those of electrons
and protons. Whereas the equality in magnitude of the
charges of electrons and protons is known to the extreme
accuracy [2, 3]

iQ, +Q„i &10 'e,

the equality in magnitude of the charges of electrons and
positrons is much more difficult to study directly. Af-
ter reviewing the available body of evidence, Hughes and
Deutch conclude that the present limit on the net neu-

trality of an electron-positron pair is

the overall charge of an atom by the vacuum polariza-
tion would come in order (Zn) . According to Furry's
theorem [6], this order normally vanishes identically due
to the invariance of quantum electrodynamics (@ED)
against charge conjugation (C invariance). However, if
Q, and Q; do not balance each other, this would imply
a violation of C invariance and hence invalidate Furry's
theorem.

It is not clear that a completely consistent quantum
field theory of @ED without C invariance can be con-
structed, but for our purposes it is sufficient to consider
an effective theory that is consistent at the one-loop level.
This is provided by the Lagrangian

~Q, +Q;~ &4x10 e. (2)

Here we would like to point out that there exist far
more stringent bounds on this quantity from indirect
sources. Our argument is based on the fact that the
vacuum polarization in heavy atoms contains an equal
number of electrons and positrons and hence would con-
tribute to the overall charge of an atom, if the charges
of electrons and positrons do not balance each other pre-
cisely. This reasoning is closely related to the observation
first made by Morrison [4] and Schiff [5], that the equal-

ity of the gravitational masses of electrons and positrons
is probed to about 1% accuracy by the fact that the con-
tribution of vacuum polarization to the mass of an atom
does not lead to a violation of the equivalence principle.

As we will show below, this argument is much more
powerful in the case of the electric charge. In fact, our
bound would be even more precise were it not for the
necessity of charge renormalization. Since the amount
of charge contained in the lowest order (in Zci, where
Z is the nuclear charge) vacuum polarization is directly
proportional to the source charge of the Coulomb field,
the net vacuum polarization charge to this order can be
absorbed in the renormalized charge of the source, ren-
dering it effectively unobservable. This reasoning does
not apply to higher orders in Zo, of the atomic vacuum
polarization, which do not contribute to charge renor-
maliz ation.

If the charges of electrons and positrons are not op-
posite and equal, the first nonvanishing contribution to

where g,~; = PyQ denotes the Dirac field projected
on positive and negative energies, respectively, Q, and

Q; are the charges of electron and positron, and Q de-
notes the coupling constant associated with pair creation.
From the success of @ED precision measurements we

know that Q, :——e ——Q; at least to within 10 s [1]
and Q = —e to within 10 s [7].

In addition to C invariance, the Lagrangian (3) breaks
gauge and PCT invariance. The former expresses the
fact that charge conservation is violated if one assigns
unequal charges in magnitude to electron and positron,
but allows for pair annihilation into a neutral photon.
The violation of PCT invariance is reconciled with the
Pauli-Liiders theorem [8] by noting that the projection
operators P~ appearing in (3) are nonlocal. They are
given by

„s,Kg(m~x —x'~)
4z2 x —x' 2

(+i~ V+ m)@(x, t), (4)
1

2m

which is nonlocal on the scale of the electron Compton
wavelength. Although the breaking of gauge and PCT
invariance may seem unattractive, it is unavoidable if
one wants to construct a low-energy effective theory de-

scribing particles and antiparticles with unequal opposite
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charges.
We now apply the Lagrangian (3) to the calculation

of order n(Zn)z vacuum polarization in atoms, which is
the lowest order where a nonvanishing Q, + Q; would
contribute. The relevant Feynman diagrams describing
the contribution of vacuum polarization to Rutherford
scattering on a nucleus are shown in Fig. 1. Intuitively,
they correspond to scattering on the virtual positrons
(a) and electrons (b) in the polarization cloud around
the nucleus. There is a time ordering (zo ) yo) assumed,
which is imposed by the nucleus. Therefore arrows point-
ing up represent electron propagators S,(z —y) = 8(xo-
yo) S+(x —y), whereas arrows pointing down correspond
to positron propagators S;(y—x) = —8(xo —yo)S (y —z).
Here the propagators S+ are related to the Feynman
propagator by [9]

S (* y—) = e(z, y—,) S'(* y ) 0(y, x—,) S (-x y—).

After Fourier transformation we obtain

ppE„—p p+ m 1

2E„pp —E„+is '

ppE+ p p —m 1

2' pp + E„—is '

(6)

where E„=gpz + rnid. These propagators together with
the vertices, modified by the coupling constants Q„Q;,
and Q, respectively, define the Feynman rules which have
to be used in Fig. 1. The contribution of the two dia-
grams to the scattering matrix is strictly proportional to

] the charge imbalance:

4 4

ASy, = (Q, + Q;)QQ 4A„(q)A„(q')D(q+ q') uypqu, tr[S;(p+ q')p"S, (p)p"S;(p —q)p ], (7)

where A„(q) represents the electromagnetic potential generated by the nucleus and Q denotes the charge of the
scattering particle. The loop integral over p in (7) is superficially linearly divergent, but is actually finite due to
cancellation of the leading orders in p. We also note that, in contrast to the fourth-order contribution to vacuum
polarization, there is no need for a finite subtraction [10].

For our purposes it is sufficient to consider the limit of forward scattering (q+ q' = 0) in the nonrelativistic limit,
where only the timelike components (p, = v = A = 0) contribute. Then it is easy to see that the effect of (7) on the
scattering amplitude corresponds to the presence of an additional charge

d'q +(q')' d'p EP'~ ~ E&+p q—

E (E +E— (8)

surrounding the nucleus. Here F(qz) is the nuclear elastic
form factor and E„~= g(p —q)z+ mz. Since we are
not interested in extreme precision, we simply cut ofF the
q integration at the inverse nuclear radius R and evaluate
the integrals in (8) to leading order in the cutoff. We also
set Q = —e. The result is

1

where the constant c depends on the details of the nu-
cleon form factor and can be neglected for our purpose.
For a heavy atom, such as lead (Z = 82, R = 7 fm), we
find b,Ze —

io (Q, + Q;). With the limit (1) on the ap-
parent residual charge of the atom per proton, b,Z/Z, we
obtain the bound

EZe= (Q. +Q.-) 2 ln( }+c (9)
]Q, + Qsi (10 ' e. (10)
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FIG. 1. Diagrams contributing to second-order (in Za}
vacuum polarization correction to the forward Coulomb scat-
tering cross section on an atomic nucleus. Diagram (a} is
proportional to the positron charge qs and (b} to the elec-
tron charge q, .

Because the net vacuum polarization charge is quadratic
in the nuclear charge Z, it is impossible to simultaneously
adjust the electron-positron and electron-proton charge
difFerences such that all atoms are neutral, without satis-
fying the bound (10). Since the momentum integrations
in (8) involve only momenta up to R, and the structure
of QED has been tested to very high precision over that
range, we believe that our result is essentially model in-
dependent. Because our efFective Lagrangian (3) breaks
PCT invariance, the bound (10) can also be taken as a
new test of PCT symmetry, which is better by a factor
of 4 than the limit derived from the neutral kaon sys-
tem [11], but tests a different mode of PCT symmetry
breaking.

In conclusion, we have shown that the existing limit on
violations of the neutrality of atoms sets a very stringent
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limit on the opposite equality of electron and positron
charge, if one considers the second-order vacuum polar-
ization, which normally vanishes due to Furry's theorem.
It is unlikely that direct experimental tests can improve
on this bound soon.
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