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Calculations with anomalous trilinear gauge boson vertices have been criticized as overestimates due
to a failure to incorporate gauge invariance. We show here that the criticized calculations are gauge in-
variant, although this symmetry is realized nonlinearly. We instead trace the overestimates to an in-

correct treatment of cutoffs in loop diagrams.
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Probably the least satisfactory aspect of the standard
model is the ad hoc manner in which symmetry breaking
and the concomitant generation of particle masses are im-
plemented. We can expect to learn a great deal more
about the symmetry-breaking mechanism at higher ener-
gies through the study of the Higgs boson (should it be
found) and/or the scattering of gauge bosons. In the
meantime, however, the low-energy effects of this sector
can be parametrized in terms of an effective Lagrangian
in which any new physics appears as nonrenormalizable,
effective interactions. The dependence on M, the new-
physics scale, of a dimension-n operator in this Lagrang-
ian is generically M*™".

One subgroup of such effective operators which has un-
dergone particular theoretical scrutiny during the past
ten years is that of anomalous trilinear gauge boson ver-
tices (TGV’s). These couplings are of special interest be-
cause they have virtually the lowest dimensions possible
for nonstandard interactions, and so should be the least
suppressed by inverse heavy masses, and yet they are as
yet poorly probed by experiment. The self-couplings of
gauge bosons also directly test the gauge structure, and
hence the underlying symmetry breaking, of the standard
model. Much work has gone into constraining such terms
via their loop-induced processes at low energies, as well as
examining their effects at future colliders (see Ref. [1]
for references to the literature).

Recently, de Rujula and co-workers have claimed that
many of these analyses are wrong because the Lagrang-
ians used are not gauge invariant [2]. We argue here
that this claim rests upon unstated assumptions that are
not sufficiently general. It is true that if the Higgs boson
should be light enough to appear in the low-energy theory
then the electroweak gauge symmetry should be linearly
realized, as de Rujula et al. take it to be. In this case,
some previous calculations do overlook the Higgs contri-
bution to certain processes. However, the Higgs boson
need not be light; indeed it may not exist at all. We ar-
gue instead that any Lagrangian containing W’s and Z’s
which satisfies Lorentz invariance and Uen,(1) gauge in-
variance is automatically SU;(2)xUy(1) gauge invari-
ant— this gauge invariance is simply nonlinearly realized.

We do, however, agree that most of the bounds on
anomalous TGV’s are considerably overestimated [3].
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The real culprit is not gauge invariance at all—rather, it
is the improper use of cutoffs to estimate the effect of
such operators in loop diagrams. Since TGV’s cannot yet
be measured directly, bounds on such operators come
solely from their contributions to loop-induced processes,
which are commonly regularized using a cutoff A. Typi-
cal results vary as logA, A%, or A% where A is taken to be
of the order of the scale of new physics, leading to very
stringent bounds on anomalous TGV’s.

This procedure errs in attributing a physical signifi-
cance to the cutoff, and often violates the decoupling
theorem. The real bounds to be deduced from such loop
calculations are, in general, much weaker than those
found in the literature because the cutoff dependence of
an amplitude in the low-energy theory rarely gives an ac-
curate indication of the true dependence on the high-
energy physics scale. We argue that at most a logarith-
mic dependence on the heavy-mass scale can be inferred
purely from the low-energy effective Lagrangian.

Although well known in some circles, given the con-
fusion in the literature it is clear that these ideas have not
made their way out into the wider community which is
now finding applications for effective-Lagrangian tech-
niques. For this reason we feel it is appropriate to reex-
amine them here.

Gauge invariance.— Suppose we wish to specify a low-
energy effective Lagrangian which describes the interac-
tions of the spin-one W and Z° bosons among them-
selves and with other matter fields. There are several
choices one can make. One approach is to require only
that the Lagrangian respect the electromagnetic gauge
group. (We refer to this as the “non-gauge-invariant”
Lagrangian.) Another possibility (the “nonlinearly real-
ized gauge-invariant” Lagrangian) is to demand invari-
ance with respect to the full SU;(2) XUy (1) gauge sym-
metry, with all but the unbroken Uen (1) being nonlinear-
ly realized [4]. In this case the only light particles in the
unknown symmetry-breaking sector are assumed to be
the three Nambu-Goldstone bosons which give mass to
the W * and Z°.

In fact, these two Lagrangians are equivalent, as was
first shown by Chanowitz, Golden, and Georgi (CGG)
[5], and has been more recently discussed in Ref. [1].
The non-gauge-invariant Lagrangian may be obtained
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from the other by working in a specific gauge— unitary
gauge. The proof of this is briefly sketched below. The
argument is presented in more detail, including explicit
calculations, elsewhere [1,5].

In the formulation with nonlinearly realized gauge
invariance, one introduces the three Nambu-Goldstone
fields ¢, (x) nonlinearly via the matrix-valued scalar field
E(x) =expliX,v?(x)/f], where the X, are the broken
generators of SU; (2)xUy (1) (we take X3=T3—Y and
normalize unconventionally: tr[7,7T,]= % &, for all gen-
erators including the hypercharge Y). The Nambu-
Goldstone boson decay constant f is of the order of the
symmetry-breaking scale. It is related to the W mass by
Mw =g,f, in which g; is the SU;(2) gauge coupling. By
assigning the same decay constant to all three Nambu-
Goldstone bosons, we implicitly assume a custodial
SU(2) symmetry (broken only by hypercharge), although
this is irrelevant for the argument we wish to make (see,
e.g., Ref. [5]).

The nonlinearly realized gauge-invariant Lagrangian is
constructed from & and its covariant derivative: 2,(&)
=£19,6—iETW &, where W,=g,WiT,+g(B,Y repre-
sents the electroweak gauge potentials. It is convenient
for these purposes to define the following fields:

g W, =iV2trlT+D,(0)], (1
(gt+g3)'2Z,=2itr(T3 = Y)D, (O], ()

in which T+ =T+iT,. These fields are constructed in
such a way as to transform purely electromagnetically
under arbitrary SU;(2) XUy (1) transformations. It fol-
lows that an arbitrary Uen(1)-invariant Lagrangian that
is constructed from these fields becomes automatically
invariant under the full nonlinearly realized electroweak
gauge group.

This shows that the non-gauge-invariant Lagrangian
and the Lagrangian with nonlinearly realized gauge in-
variance are equivalent, term by term. One simply makes
the correspondence Z,<>Z, and Wt —W,*, where Z,
and W,,i are the fields used in the non-gauge-invariant
Lagrangian. This connection is explicit in unitary gauge,
which is defined by the condition &(x)=1 throughout
spacetime. In this gauge the fields W,,Z, and W,,Z, be-
come identical, reducing the nonlinearly realized gauge-
invariant Lagrangian to the non-gauge-invariant La-
grangian. Inspection of the corresponding ghost deter-
minants [1] does not modify this conclusion. Of course,
this equivalence only holds for energy scales at which the
effective Lagrangians themselves make sense. For W’s
and Z’s, the maximum applicable scale is roughly
4nMw/g,, where g, is the SU;(2) coupling. (The con-
clusions further address the conditions for the validity of
the low-energy expansion.)

Being related to one another by a gauge transforma-
tion, both Lagrangians clearly express the same physical
content. From a conceptual point of view, this demon-
strates that there is little to choose between a description

of light spin-one particles in terms of a nonlinearly real-
ized gauge symmetry and no gauge symmetry at all. In
this way it is seen that criticisms of analyses involving
TGV’s based on the supposed failure of gauge invariance
in the Lagrangians used are simply red herrings. We
next argue that the overestimates in the literature instead
arise from the careless use of cutoffs in regularizing
divergent loop diagrams.

Cutoffs.— In the absence of direct measurements, the
only way to constrain anomalous TGV’s is through their
contributions to such loop-induced processes as the p pa-
rameter, (g—2),, etc. Typically these loop diagrams
diverge and are regularized through the use of a cutoff A.
In this way many authors [3] find that their results de-
pend quadratically or even quartically on A. Taking A to
be of the order of the scale of new physics, these authors
find large contributions from anomalous TGV’s, and so
infer extremely stringent bounds.

There are several problems with this reasoning. First
of all, one cannot take A to be of the order of the new-
physics scale. More importantly, all quadratic (or
higher) dependence on A is simply canceled by counter-
terms coming from the high-energy theory. At one loop
at best only a logarithmic dependence on the scale of new
physics can be extracted purely from the low-energy
effective Lagrangian.

Consider a theory with two very different mass scales,
M >m, and suppose we calculate, for example, the con-
tributions to a low-energy mass shift du? (such as to the
W or Z mass):

sutm2 M) =coM*+cim*+com/M?+ -, (3)

where the ellipses represent terms that are suppressed by
more than two powers of m/M. We remind the reader
that only logarithmic infrared divergences are possible at
zero temperature in four dimensions [6], so that terms
like M*/m?—which would diverge as a power when
m/ M tends to zero—cannot arise. The dimensionless co-
efficients are functions of the other (renormalized) pa-
rameters of the theory and may depend at most logarith-
mically on the large mass ratio M/m.

Now consider splitting the calculation up into a “high-
energy” and a “low-energy” piece. First choose a cutoff
A satisfying A<<M. Then calculate the high-energy con-
tribution to 8u? by integrating out all frequencies above
A. This produces an effective Lagrangian which is ap-
plicable at energies less than A. Finally, using this
effective Lagrangian, compute the low-energy contribu-
tion to 8u2. Clearly this is simply a reorganization of the
complete calculation and thus the sum of the high-energy
and low-energy contributions must equal the full result of
Eq. (3):

Sul(m,M) =8ut(m,AM)+8ui(m,AM), 4)

where the subscript “le” (“he”) refers to the low-energy
(high-energy) contribution.
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Note that, contrary to much common usage, the cutoff
must to be taken much smaller than the scale of the new
physics: A< M. This requirement has two roots. It is
required in order to justify the neglect within loops of
high-dimension interactions of the low-energy effective
Lagrangian. It is also necessary if the loop expansion it-
self is to be trusted. This is because the nonrenormaliza-
bility of the low-energy interactions makes successive
loops depend on larger and larger powers of A/M. Ne-
glect of these divergent higher-loop contributions is only
possible if A<« M. (This argument needs some modifica-
tion in dimensional regularization, as we discuss below.)

The largest contributions to the low- and high-energy
parts of 8u? in a particular calculation might look like

Supe=coM>+b A*+ -+ - Suf=biA*+--- . (5)

In both of these expressions the ellipses represent terms
that depend differently on the various small mass ratios
m/A, A/M, and m/M. The key observation is that these
two contributions can only sum to the A-independent re-
sult of Eq. (3) if their coefficients are related: b;+b] =0,
etc.

This is the main point. Many of the articles in Ref. [3]
use the coefficient b; (or an analogous coefficient calcu-
lated from the particular process they have considered) to
put bounds on anomalous TGV’s. However, this term has
no physical significance—it is exactly canceled by a coun-
terterm from the high-energy piece of the calculation.
The important term, coM 2, which gives the true depen-
dence on the high-energy physics scale and thus could be
used to bound the new physics, cannot be calculated pure-
ly from the low-energy Lagrangian. The coefficients b
and cq are simply unrelated.

This example also illustrates the problem with equating
the existence of quadratic divergences in the effective
theory with the degree of fine tuning in the underlying
theory. Naturalness is instead better analyzed simply us-
ing dimensional analysis, in which it is realized that the
coefficients of low-dimension operators in the effective
Lagrangian can, on dimensional grounds, receive contri-
butions that are proportional to positive powers of the
heavy mass scale M. The coM ? term of Eq. (3) furnishes
one such example. The danger of trying to give this type
of physical interpretation to quadratic divergences is
perhaps most starkly illustrated in dimensional regulari-
zation, where quadratically divergent graphs involving
light particles are proportional to powers of a small
light-particle mass m 2, rather than to A2

Similar remarks apply to the quartic and higher A
dependence that has also been reported in some of the ar-
ticles in Ref. [3] and elsewhere. People often distinguish
two types of these divergences. There are both bona fide
higher divergences as well as those that are really quadra-
tic or lower divergences ‘“‘in disguise.” The distinction
arises because whereas some effective interactions have
coefficients that are proportional to powers of 1/M, others
may be suppressed only by powers of 1/A. Typically
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terms are suppressed by M rather than A if they violate
the selection rules of the renormalizable interactions of
the low-energy theory. The Fermi interaction is a famil-
iar example of this kind. Clearly any inverse powers of A
appearing in an effective coupling can partially cancel
low-energy-loop divergences and so weaken their overall
cutoff dependence. The same does not happen for terms
that are suppressed by inverse powers of M, however.
We need make no such distinction since neither carries
any physical meaning—the A independence of the final
result ensures that all such divergences are simply can-
celed by counterterms generated by the high-energy part
of the theory. This is equally true for divergences like
A*YM? or A*/m?, both of which can and do legitimately
arise in calculations. The fallacy that cutoffs track heavy
masses is particularly clear for the latter of these since a
behavior of the form M */m? may be ruled out by general
arguments.

A commonly occurring situation where a low-energy
divergence does [1] reliably track the dependence on a
heavy mass is when the divergence is logarithmic. In this
case the argument just given leads to a different con-
clusion for a dimensionless observable 4. Separating the
low- and high-energy contributions to 4 gives

2
A=A16+Ahe=a01n [M—z + -
m
while
I M2 " 2
Ane=agln el +, Ae=adln|— [+

(6)

In this case the cancellation of the cutoff dependence re-
quires the condition ag=agy=ayg, allowing the coefficient
of the logarithm within the full theory to be determined
from the coefficient of the low-energy logarithmic diver-
gence.

At a practical level it is clear from the above that com-
puting one-loop amplitudes with TGV’s in a low-energy
effective Lagrangian can only reliably determine any log-
arithmic dependence on the scale of new physics, M. All
bounds on anomalous TGV’s [3] which rely on quadratic
or higher divergences in such calculations are therefore
considerably overestimated.

All of these issues are particularly simple in dimension-
al regularization. The beauty of dimensional regulariza-
tion is that it completely dispenses with cutoffs for con-
trolling loop integrations and so no confusion between the
cutoff A and the heavy-physics scale M is possible. This
leads to a real distinction between the use of cutoffs and
dimensional regularization in differentiating the high-
energy and low-energy parts of an underlying theory.
When using a cutoff, all frequencies above the scale A are
integrated out. This includes not only the heavy physics
at scale M > A, but also the high-frequency components
of the light fields. In dimensional regularization, one in-
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stead integrates out only the heavy physics; the momen-
tum of the light fields in loops is still allowed to run to
infinity. There is no conflict with the low-energy expan-
sion, however, since dimensionally regularized divergent
graphs in the low-energy theory are only proportional to
light-particle masses. This last point also allows the
matching between the effective and the underlying theo-
ries to be made at the heavy scale M rather than at much
lower scales as would be required with a cutoff.

All of these points are encapsulated in the ‘““decoupling
substrate” renormalization scheme [7], which consists of
minimal subtraction when renormalizing between particle
thresholds, supplemented by the explicit removal of heavy
degrees of freedom as the renormalization point is
lowered below the corresponding mass. The “integrating
out” of the heavy particles is in practice implemented as
a set of matching conditions for the appropriate effective
couplings at these thresholds. The resulting couplings
may then be used as initial conditions for the renormal-
ization-group equations in the low-energy theory below
the threshold. In this way one sees that the logarithmic
dependence on the heavy mass scale M simply reflects the
effects of operator mixing as the effective interactions are
renormalized down from the scale M to low energies. In
fact, this is probably the easiest way to calculate the loga-
rithmic dependence on M, and hence to put reliable
bounds on new physics.

Conclusions.— Many of the past analyses of anomalous
trilinear gauge-boson vertices use effective Lagrangians
in which only electromagnetic gauge symmetry is im-
posed. The neglect of electroweak gauge invariance in
this work has been criticized recently by de Rujula and
co-workers [2]. We argue here that this criticism is
unjustified—these Lagrangians are the unitary-gauge
versions of Lagrangians for which SU.(2) xUy (1) gauge
invariance is present, but nonlinearly realized. In this
sense any theory containing light W’s and Z’s may be
thought to be automatically SU;(2)xUy(1) gauge in-
variant.

It is nevertheless true that many loop-generated bounds
[3] on these effective couplings are incorrect. The culprit
in these calculations is the misuse of cutoffs in estimating
the size of loop diagrams. The point is that the cutoff
dependence in the low-energy theory does not, in general,
give an accurate indication of the true dependence on the
heavy physics, although it can do so for a logarithmic
divergence. The constraints on anomalous trilinear gauge
boson couplings are therefore considerably weakened.

A final question then remains: Given that most of the
constraints on anomalous TGV’s are invalid, is it possible
that these couplings might be large enough (i.e., ~1) to
be seen relatively soon? The main issue which constrains
the size of such operators is whether they would invali-
date the low-energy expansion itself. An effective La-
grangian is only useful if higher-dimensional operators
are suppressed by powers of E2/M?2, where E is a typical
external energy and M is the scale of the new physics.

Now, if x is the dimensionless coefficient of a dimension-
four effective interaction, then its contribution to scatter-
ing processes normalized to the lowest-order terms in the
effective interaction will be of order xE %/v?, where v is
the electroweak symmetry-breaking scale. For x~1 this
is not small for the energies of practical interest. Rather,
these effects are O(E?*/M?) only if x~0@?M?).
These “‘power counting” limits are, in fact, the strongest
bounds on anomalous TGV’s. Were x of order 1, this
would imply that the scale of new physics is O(v), and it
is likely that the new degrees of freedom would be direct-
ly observable, instead of through their contributions to
TGV’s.
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