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Towards a Statistical Mechanics of Spatiotemporal Chaos
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Coupled Henon maps are introduced to model in a more appropriate way chaos in extended systems.
An effective technique allows the extraction of spatiotemporal periodic orbits, which are then used to ap-
proximate the invariant measure. A further implementation of the (-function formalism reveals the ex-

tensive character of entropies and dimensions, and allows the computation of the associated multifractal
spectra. Finally, the analysis of short chains indicates the existence of distinct phases in the invariant

measure, characterized by a different number of positive Lyapunov exponents.

x„'+1=a (x„')'+bx'„— (la)

with

x„'=(1—s)x„'+—,
' c(xj+'+x„' '), (lb)

where n and j denote time and space variables, respec-
tively; a and b are the usual parameters of the Henon
map and e is the diff'usive coupling parameter. For b =0,
model (1) reduces to the familiar lattice of logistic maps
[1]; for b=1, a conservative dynamics is generated; for
a=0, uncoupled Henon maps are obtained.

In the present Letter, we consider model (1) as a para-
digmatic example for developing and applying a thermo-
dynamic formalism to extended systems, in strict analogy

PACS numbers: 05.45.+b

Powerful methods have been introduced in the past
years to investigate low-dimensional strange attractors,
while less is known about spatially extended systems
when many (infinite) degrees of freedom are switched on.
Direct integration of partial differential equations often
requires a large amount of computer time, thus limiting
the accessible parameter region. Coupled map lattices
(CML) [1], characterized by discrete space and time
variables, are better suited for simulation and still repro-
duce many of the interesting features exhibited by more
realistic systems [2]. However, the CML model most
studied in the literature (a chain of 1D maps) has the
drawback of being characterized by a noninvertible dy-
namics. To overcome such a di%culty, here we introduce
a lattice of coupled Henon maps,

with what has already been done for 2D maps. Spatially
and temporally periodic orbits are first extracted, by ex-
tending a technique invented for the single Henon map
[3]. An analytic procedure is then developed to deter-
mine the Lyapunov spectrum of a periodic orbit embed-
ded in an infinite chain. An appropriate (-function for-
malism is eventually applied to evaluate the multifractal
spectra of entropy and dimension densities.

A statistical-mechanics description of chaotic attrac-
tors can be achieved by encoding all trajectories as sym-
bol sequences, through the introduction of a generating
partition. However, the construction of such a partition
becomes practically unfeasible already in a 4D phase
space, when it requires the accurate definition of a 3D hy-

persurface. An alternative method to describe a strange
attractor is based on the identification of periodic orbits
of increasing period. It exploits the well-known fact that
periodic orbits are dense in the invariant measure. Here,
we can determine simultaneously periodic orbits and sym-
bol sequences, by introducing a fictitious dynamics along
the continuous "time" axis t,

x.'(r) =(—I)'""[x~+1(r)—a+ [x„'(r)]'—bx„—1(r)j,
(2)

where s(n,j ) C [0, 1]. A cycle (J,N) of period J in space
and N in time is, by definition, a fixed point of Eq. (2),
once suitable periodic boundary conditions have been set-
tled. Our numerical experiments appear to establish that
the dynamical system (2) is characterized by the follow-
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ing properties: (i) The vast majority of (J,N) orbits are
stable for only one choice of the pattern of the JXA
coeIIicients s(n, j); (ii) diA'erent periodic orbits are stable
for diA'erent s (n,j ) configurations. Accordingly, the
s(n, j)'s provide a good symbolic representation of the dy-
namics generated by model (1). These results generalize
what was numerically found by Biham and Wenzel for
the single Henon map [3] and rigorously proved for the
logistic map in Ref. [4]. In our case, for a =1.4, b =0.3,
and a=0.055, there is less than 1% of failures due to or-
bits which are unstable for all s(n, j) patterns.

Careful numerical simulations [5] suggest that the
eA'ect of a small coupling on the topology of the attractor
is limited to the pruning of some of the orbits existing for
~=0. Therefore, the search of periodic trajectories can
be further simplified by testing only those symbol pat-
terns which are allowed in the uncoupled case. The few
orbits missed by this technique have been identified
through the implementation of Newton's method. More-
over, we must discard all the cycles which do not belong
to the attractor. For the single Henon map, this set of or-
bits reduces to the fixed point identified by a sequence of
all 0's. In our case, the iteration of Eq. (1) indicates that
all periodic solutions characterized by a sequence of all
0's at least in one site do not belong to the attractor.

Application of the g-function formalism to periodic or-
bits allows an accurate statistical analysis of the hyper-

wJ — gp[2(I ) j+&( —&kjwj —I+ +&kj j+I)]+b

8„+i= —x„[2(1—e)8„+e(8i '+8„+')]+bb„ (3)

which, in vector notations, reads as (b„+~,b„)
=1„(b„,b, ~). I „being the 3acobian of a spatially
periodic orbit, a periodic operator, it is natural to invoke

the Bloch theorem in order to determine its spectrum
and, in turn, the Lyapunov exponents. In the case of a

stationary solution, I is independent of n and the stability
of the orbit is deduced from its eigenvalues. According to
the Bloch theorem, the eigenvectors of I can be expressed
as

u (l, k) =e'"'w'(l, k), v (l, k) =e' 'z'(l, k), (4)

where the wave number k is equal to 2zg/J (0» p ~ 1),
and l is the band index (I ~ l ~ 2J); w (l, k) and z (l, k)
are periodic functions of j. By substituting Eq. (4) in the
eigenvalue problem associated with I, we find

bolic "phase" of stran e attractors. In fact, once their

Lyapunov exponents k ~ (where k ~ ~ k ~ if p & p', p
labeling the diAerent exponents of a given orbit) are

known, the coefficients of the power-series expansion of
' can be computed [6]. In spatially extended systems,

in the limit of infinite chain length L, the Lyapunov spec-
trum A(p) =k ~1 becomes a function of the continuous

variable p =p/L (where 1 ~ p ~ 2L, for our model). In

order to estimate A(p), we start from the linearization of
F.q. (1),

where p is an eigenvalue, and the dependence on l and k
has been dropped for the sake of simplicity. For each
choice of the wave number k, 2J eigenvalues are found by
solving the linear system (5). The Lyapunov exponents
are then given by In~p[ (~ ~

denotes the modulus opera-
tion), and the spectrum A(p) is determined after ordering
the various bands, and taking into account possible over-

laps. The extension to orbits also periodic in time is
straightforward. We must consider the product I jv

=+„-~I„(k),where I „(k)is implicitly defined on the
right-hand side of Eq. (5) as the operator acting on the
vector (w, z). The Lyapunov exponents are then obvious-

ly given by In~p~j/N, where the pjv's are the eigen-
values of I z(k). Accordingly, the determination of the
Lyapunov spectrum of a spatio temporal periodic orbit is
reduced to finding the eigenvalues of 2Jx2J matrices,
i.e., to a finite-dimensional problem.

From the theory of low-dimensional chaos, we know
that the probability P; to observe the symbol sequence
(of length n) corresponding to a given periodic orbit
scales as P;=e '" [7], where H; is the sum of all posi-
tive Lyapunov exponents for periodic orbit i. Assuming
that the dynamical entropy H; is an extensive quantity, it
is convenient to introduce the density h;=H;/L. In the

A;(p)dp =0.
The dimension density for the stationary solution xj =c
and for the above mentioned parameter values is a~
= 1.34240.

Let us now briefly recall the basics of the thermo-

(7)

thermodynamic limit (L ~), h; is expressed in terms
of an integral, h;= fA;(p)dp, where the integration ex-

tends over positive A s. For instance, for our choice of
the parameter values, the local entropy of the stationary
orbit x =c =0.883896. . . is h~ =0.606074.

Analogously, a dimension density a; can be defined

from the local version of Kaplan-Yorke formula,
P

a, L =P —g X'~'/X'~'", (6)
p~]

where P is the largest integer such that the sum of the
Lyapunov exponents is still positive. Rigorously speak-
ing, relation (6) represents an upper bound to the exact
local dimension [8]. Nevertheless, we are not aware of a
single nongeneric example where the bound is not sat-
urated. The extension of Eq. (6) to the continuum reads
as
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dynamic formalism. We start from the study of the scal-
ing behavior of a generic sum over all cycles of length n

(i.e., over the elements of a suitable partition of the phase
space) such as

gb Pll (8)

where the b s are physical quantities which scale ex-
ponentially with n Th. e exponent P can be estimated by
applying the grand-canonical formalism and introducing
the inverse ( function,

(9)
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where n denotes the period and where the product, at
variance with the sum in Eq. (8), is extended over distinct
(under temporal rotations) orbits only. The extra ex-
ponent m; has been introduced to take into account the
possibility that different orbits are characterized by the
same b value. Finally, the exponent P is given by lnzo,
where zo is the first zero of ( '. While the exact evalua-
tion of g requires the knowledge of an infinity of orbits,
Cvitanovic showed that the estimate of P, obtained by
suitably truncating the Taylor expansion of g ', is often
sufficiently accurate [6]. Since a formalism implicitly in-

cluding the limit L ~ is not available, we limit our-
selves to consider finite-length chains (namely, L =2, 3,
and 4). We will see that interesting and new phenomena
appear already for such short chains.

Let us start from the generalized entropy densities

l(q), defined by
—h(qnL I (q)&Le =e

where the sum is extended over the orbits of period n in

time and L in space (and their submultiples) and h; is the
local entropy density estimated for a chain of length L.
Equation (10) has the same structure as Eq. (8), so that
we can construct the corresponding ( function. Equation
(I) being invariant under both spatial translations and
reflections, each orbit belongs to the class defined by
these symmetry operations. The number of elements in a
class represents the multiplicity m; introduced in Eq. (9).
As it is well known, we can pass from l(q) to the more in-

formative multifractal spectrum g(h), via the Legendre
transform [9]

g(h) =hq —l(q), h =I'(q) .

The results of numerical simulations for the above men-
tioned parameter values are reported in Fig. 1(a), the
numbers denoting the chain lengths. The spectrum of en-
tropy densities reduces, for L =I, to the standard spec-
trum of entropies of the single Henon map. The spec-
trum for two coupled maps has been obtained by truncat-
ing the expansion of g (z) after 18 terms, i.e., consider-
ing all orbits up to period N =18. The comparison of the
two spectra shows that the topological entropy density

0.9
1.0

I 0.6
tv & t4 0V

I

t0 ~ f3
FIG. 1. Multifractal spectra of entropy density g(h) [(a),

(b)] and of dimension density f(a) [(c),(d)], for a 1.4,
h =0.3, and e 0.055. The numbers reported in (a) and (c) in-
dicate the chain length, while solid circles refer to L 4. The
curves obtained for one map coincide with the standard spectra
of the Henon map. In (b) and (d), the outcomes of simulations
with four maps are reported. The curves, from left to right, cor-
respond to the spectra of periodic orbits with 2, 3, and 4 positive
Lyapunov exponents, respectively.

(i.e., the maximum of g) is definitely smaller for L =2.
This clearly reveals the stabilizing effect of the diffusive
coupling. Moreover, the spectra for L =2 and 3 (ob-
tained with N =15) agree very well for h )0.3, con-
firming the conjecture that g and h are truly intensive
variables. The agreement is less pronounced when the
curves are compared with the results for L =4 and N 11
[see solid circles in Fig. 1(a)]. However, the discrepancy
can be presumably attributed to a nonperfect convergence
of the last values, due to the shorter period therein used
(the explosion of the number of cycles prevents a
significant improvement). A further evidence of the fast
convergence for increasing L arises from the observation
that the maximum of h is extremely close to the asymp-
totic (L =~) exponent h~, previously computed for the
stationary solution x~ =c.

The much larger fluctuations observed in the small h

range require a different explanation. First of all, the
nonhyperbolicity of the model allows the existence of
weakly unstable orbits of long period, which slow down
the convergence. However, the difficulties encountered
with four maps are not apparently related to such a
phenomenon. We conjecture that the slow convergence is
caused by the existence of distinct "phases. " In fact, the
spectra g(h) estimated separately from the orbits charac-
terized by 2, 3, and 4 positive Lyapunov exponents, re-
spectively, exhibit a much better convergence [see Fig.
1(b)]. This is in complete analogy with Ref. [10), where
the same approach allowed us to show the existence of
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two phases in a strange repeller.
Let us recall that whenever different phases exist (e.g. ,

homoclinic tangencies and hyperbolic points in nonhyper-
bolic attractors [7]), characterized by different spectra
g~(h), the global spectrum is determined as the lowest
concave curve such that g(h) &gz(h). If there are at
least two different phases prevailing into distinct h re-
gions, then a phase transition can be detected as a discon-
tinuity in a derivative of tI(q). This seems to be our case,
by observing the three curves reported in Fig. 1(b). A
direct iteration of model (1) rules out the trivial hy-

pothesis that the three curves are associated with three
distinct attractors.

Now, we apply the same formalism to the estimation of
fractal dimensions. The key expression is represented by
the implicit equation [7]

ge "'"'exp —P),'&'r'&'(q)n =1, (12)
P

where r (q) =(q —1)d (q) and d (q) is the partial
dimension along the pth direction. Such an equation has
been successfully applied to 2D maps where, bein~ dt'
= I, there is only one unknown quantity, namely, d (q).
It is still a meaningful relation whenever the number P of
directions characterized by d ~ =1 is the same for all or-
bits. In the remaining cases, the single Eq. (12) is no

longer su%cient to determine the partial dimensions. We
claim that, whenever only the global dimension d(q)
=Pt, d P (q) is required, this difficulty can be overcome
by rewriting Eq. (12) as follows:

Pe ' exp[(q —1)k; + [a; d(q)]nL—] =1. (13)

This relation is fully equivalent to Eq. (12) whenever the
latter one can be meaningfully applied. Moreover, it can
be implemented also when the number of integer dimen-

sions is not the same for all the periodic orbits. As Eq.
(13) is an implicit relation of type (8), we can again
resort to the computation of an appropriate t, function to
compute r(q) =(q —1)d(q). The Legendre transform

f(a) of r(q) is plotted in Fig. 1(c) for L from I to 3. At
variance with entropies, the agreement between the di-
mension spectra for L =2 and 3 is not equally good.
However, the spectrum for L =4 [solid circles in Fig.
1(c)] is definitely closer to that one for L =3 in the large
a range, suggesting that the convergence is only slightly
worse than for entropies.

However, the most impressive result is found at small
dimensions, where the existence of three phases is again
confirmed. In fact, the slow convergence observed when

computing the global spectrum for L =4 is sped up by
analyzing separately the sets of orbits characterized by a
different number of positive Lyapunov exponents. This
phenomenon is, in a sense, complementary to the phase

transition observed in filtered chaotic signals [11],where
the competing phases corresponded to distinct stable
directions in phase space: here, it is the unstable direc-
tions which distinguish the phases.

For the sake of completeness, let us also recall that the
actual procedure, entirely based on periodic orbits, is not
able to capture the relevant features of the nonhyperbolic
phase arising from the scaling behavior around the homo-
clinic tangencies [12].

In summary, the technique introduced in Eq. (2) opens
the possibility of an effective determination of periodic
orbits in spatially extended systems (in particular, in the
case of coupled logistic maps). For comparison, the
direct estimation of the spectra from periodic orbits can
exhibit a comparable accuracy to that achieved by the
implementation of the g-function formalism only in a lim-

ited range of small q values, and after some fitting work
and extrapolations have been performed.

Our approach has to be considered as only a first,
though important, step towards the development of an ac-
curate statistical treatment of extended systems. In fact,
further improvements and ideas are required to allow re-
liable investigations of longer chains. This is especially
required at larger coupling values, where a slower conver-
gence is found [5].
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