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We analyze a random perturbation applied to the baker's map, a prototype for chaotic Hamilto-
nian evolution. We compare two strategies for following the perturbed evolution: (i) tracking the
perturbed pattern in fine-grained detail; (ii) coarse graining by averaging over the perturbation.
We find that the Landauer erasure cost associated with the information needed to implement the
first strategy is overwhelmingly larger than the standard free-energy reduction associated with the
second strategy. This finding provides a quantitative justification for coarse graining and thus an
explanation of the second law of thermodynamics.

PACS numbers: 89.70.+c, 05.45.+b, 05.90.+m

Ordinary entropy measures the degree to which incom-
plete knowledge about a physical system reduces the abil-
ity to extract work from that system; it thus appears
as a negative contribution to free energy. As a conse-
quence of Landauer's principle [1,2], which specifies the
unavoidable energy cost k~T ln 2 connected with the era-
sure of a bit of information, the information (quantified
by algorithmic information [3]) needed to give a complete
description of the system state also reduces the amount
of available work and thus should be added as a further
negative contribution to free energy [4, 5].

This paper is motivated by the general question [6] of
how available work decreases during chaotic Hamiltonian
evolution subjected to random perturbations. We focus
here on the baker's transformation [7], a prototype of a
chaotic area-conserving map. General considerations [6]
suggest that the results found here are not limited to
this specific example. Moreover, a generalization to the
large class of systems that can be modeled by symbolic
dynamics [8] seems to be possible.

It is well known that, for mixing systems, a suitably
defined coarse-grained entropy increases with time, ap-
proaching some equilibrium value. In Ref. [9], it is shown
explicitly that the coarse-grained probability density for
the baker's transformation approaches a constant in the
long-time limit. It is tempting to regard this result as a
proof of the second law of thermodynamics. The coarse
graining, however, appears as an ad hoc assumption. We
show that the presence of perturbations in any realis-
tic system provides a justification for coarse graining.
The famous example of a butterfly changing the pattern
of density fluctuations in the atmospher" and thereby
changing the way a thunderstorm develops on the other
side of the glob" illustrates the near impossibility of iso-
lating a chaotic system.

It is intuitively obvious that it would be crazy to try to
follow the detailed behavior of a perturbed chaotic sys-
tem. In this paper, we quantify this intuition precisely.
We show that coarse graining is the work-eEcient strat-
egy in the presence of perturbations. By this we mean

that keeping track of the perturbed phase-space pattern
leads to a much greater reduction in free energy than av-
eraging over the small-scale perturbations. The reason is
that the perturbation accesses algorithmically complex
patterns of the sort discussed in Refs. [6, 10]. The in-

formation needed to specify a typical such pattern is so
enormous that its Landauer erasure cost far outweighs
the entropy increase due to averaging.

The concept of algorithmic information was intro-
duced into physics as a way to characterize chaos [8, 11].
This characterization focuses on the algorithmic infor-
mation needed to calculate a system trajectory. For dis-
crete chaotic maps, the number of initial-condition digits
needed to specify a trajectory to a given accuracy in-
creases linearly with the number of steps one wishes to
predict. Because we are interested in the question of
available work, our approach is fundamentally different.
We start with an initial condition given to some finite
accuracy, corresponding to a finite initial area in phase
space. Under the chaotic time evolution, this area is re-
peatedly stretched and folded, thereby evolving into an
apparently complicated pattern. We ask for the algo-
rithmic information needed to specify this pattern after
n steps. We see below that this information is negligible
for unperturbed evolution, in sharp contrast with the di-
verging amount of information needed to specify a single
trajectory.

The baker's transformation is most easily described
in terms of its symbolic dynamics [8]. Each point in
phase space is represented by a symbolic string s
~ ~ s 2s iso.sqs2 . where sI, = 0 or 1. The string
s is identified with a point (q, p) in the unit square
by setting q = Pz i sA, 2 " and p = PP os A, 2

"
Sets of points S are usually [8] represented by symbolic
strings that do not extend indefinitely in both negative
and positive directions. In those strings only a subset
of symbols is specified; i.e., sk is specified only for a
subset of indices k 6 I C (.. . , —1, 0, 1,2, . . .). The
set S consists of all the points (q, p) that have a bi-
nary expansion compatible with the specified symbols sk,
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i.e. , S = ({q,p)~q = Q„,tA, 2 ", p = +Pot i, 2
" ',

tg C (0, 1), lg = sA, for k g I). For our purposes we find
it convenient to write sk = x if sA. is not determined by I;
for example, the set ((q, p) ~0 & q, p & 1/2j is denoted by
~ .xx0.0xx . or simply by xx0.0xx i.e. , so ——sq ——0
and sg = z for k g' (0, 1). The position of the dot deter-
mines how a symbolic string is translated into a pattern
on the unit square. We identify a set of strings with a
uniform probability distribution on the union of the areas
represented by the strings. The action of the baker's map
on a symbolic string is given by the shift map U defined

by (Us)p = sg+i, which means that, at each time step,
the entire string is shifted one place to the left while the
dot remains fixed. This corresponds to compressing the
unit square in the p direction and stretching it in the q

direction, while preserving the area, then cutting it ver-

tically, and finally stacking the right part on top of the
left part —in analogy to the way a baker kneads dough.

Suppose that the baker's map is applied n times to
an algorithmically simple initial distribution. For sim-

plicity, we assume that this initial condition corresponds
to uniform probability over an area that is described by
a single symbolic string containing a finite number q of
initial-condition digits, i.e. , a finite number of digits dif-
ferent from z. The algorithmic information (background
information) needed to describe the unit square and the
baker's map and to specify the initial condition we denote
by Io. We choose the {arbitrary) zero of the entropy H so
that the string xx.xx, corresponding to a uniform prob-
ability over the entire square, has entropy H = 0. Hence
the initial entropy is Hc = log(2 /1) = —q. (Through-
out this paper information and entropy are measured in
bits and log denotes the base-2 logarithm. )

After n steps, the simple initial pattern evolves into a
complicated looking pattern of narrow horizontal stripes.
To retain the ability to extract the work inherent in the
initial state, i.e. , to prevent the free energy from decreas-
ing quickly, one must keep track of this pattern of stripes,
thereby keeping the entropy constant: H(n) = Ho or
AH(n) = 0. How much information must be supplied in
addition to the initial Io to specify the pattern after n
steps? Since the pattern after n steps is obtained simply
by shifting the string n places to the left, the only addi-
tional information needed is the number n [5], requiring
DI(n) log n bits. The change in free energy is given by
EF(n) = —k~Tln2 [AH(n)+ AI(n)] = kBTln2logn-
The free-energy cost of keeping track of the evolved pat-
tern grows very slowly. Unperturbed evolution of an al-
gorithmically simple initial state does not lead to algo-
rithmically complex states, at least for reasonable values
of n. It is therefore possible in principle to retain the
ability to extract work by keeping track of the evolving
pattern.

The situation is dramatically diferent if one allows for
perturbations. In order to model a perturbation, we di-
vide the symbolic string into regions (see Fig. 1), which

n=
I I

s r
I I

I I

I

I

-I
I

1 g01 1Ixx

I

I"IG. 1. A typical symbolic string at n = 0, just before
the perturbation becomes eR'ective. Application of the baker' s

map moves the leftmost of the q initial-condition digits into
the shaded perturbation region. There are r decision digits,
which partition the unit square into 2" perturbation cells, and
s digits separating the perturbation region from the decision
digits,

remain fixed relative to the dot as the string moves to the
left. The leftmost region, called the perturbation region,
is separated by s digits (s & 0) from the decision region,
r digits wide (r & 1), which partitions the unit square
into 2" congruent rectangles, which we call perturbation
cells. Furthermore, we consider the set of area conseru-ing

perturbation maps, which act on the digits in the pertur-
bation region. A perturbed time step consists in first

applying the unperturbed map U, then splitting the pat-
tern into subpatterns defined by the perturbation cells

(i.e. , by the decision digits), and finally applying to each
subpattern a perturbation map chosen at random. For
an actual phase-space evolution, we would be primar-
ily interested in energy-conserving perturbations, so as
to separate our investigation of information and entropy
from issues raised by dissipation. The analogous pertur-
bations for two-dimensional maps, such as the baker' s

transformation, are area conserving.
To simplify the analysis, we restrict ourselves to per-

turbations that do not affect the pattern on scales smaller
than the smallest structures of the pattern itself. In sym-
bolic language, this means that the symbol z must be
invariant under any perturbation. The set of perturba-
tion maps is thereby restricted to maps that act on each
perturbation digit independently, either switching it or
leaving it unchanged. Notice that the rightmost digit in

the perturbation region characterizes the perturbation's
"strength, " whereas the linear dimensions of a perturba-
tion cell give the perturbation's "correlation lengths. "

Figure 2 shows a perturbed time step for the initial
pattern xx01.xx. The perturbation region lies just to the
left of the digit 0, as indicated by the vertical line. The
s = 2 decision digits are marked by a box. Application
of the unperturbed map leads to the pattern x01x.xx,
shown in Fig. 2(b) together with the expansion into the
four subpatterns given by the four possible choices for
the decision digits. Since only one initial-condition digit
of each subpattern is located in the perturbation region,
there are just two di6'erent perturbation maps for each
perturbation cell, the identity map and the smitch map
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that interchanges 0 and 1. Figure 2(c) shows the result
of applying one possible choice of perturbation maps to
the pattern of Fig. 2(b).

In the following, we let b,I„(n)be the additional (con-
ditional) algorithmic information needed to specify a typ
ical perturbed pattern, given the background information
Io and the number of steps n. Since the patterns are

FIG. 2. An example of the action of the perturbed baker' s
map on the initial condition shown in (a). In (b), the pattern
that results from application of the unperturbed baker's map
is split into four subpatterns determined by the four perturba-
tion cells. In the symbolic representation, these perturbation
cells are distinguished by two decision digits, here enclosed in
a box. In (c), a perturbation map is applied to each subpat-
tern independently, a8'ecting only the digits in the perturba-
tion region to the left of the vertical line. The information
needed to specify the perturbed pattern, given the initial pat-
tern and the number of steps, is AI„=4 bits. Averaging over
all possible perturbation maps leads to the coarse-grained pat-
tern in (d), with an entropy increase of b,H = 1 bit.

generated by a random mechanism that leads to equally
likely alternatives, EI& can be determined simply by
counting [6, 12]: if N„is the number of equally likely pat-
terns, the information needed to specify a typical pattern
is AI~ log N„.In the example of Fig. 2(c), there are
N„=16 patterns —two maps for each of four perturba-
tion cells—leading to AI~ = 4 bits. Averaging over the
perturbation leads to the pattern xxlx.xx shown in Fig.
2(d) and thus to an entropy increase of 6H = 1 bit.

Turn now to a general analysis. We choose the zero of
time (n = 0) so that the perturbation becomes efFective
at the first time step (n = 1)—i.e. , so that the structure
of the unperturbed pattern at the first step is on the
scale set by the perturbation strength. In the symbolic
representation, this corresponds to the situation shown
in Fig. 1: at n = 0 the leftmost of the q initial-condition
digits is situated just to the right of the perturbation re-

gion and is first perturbed at n = 1. For specificity, we
assume that at n = 1 the unperturbed pattern is con-
fined entirely to one perturbation cell. The correspond-

ing condition q ) r + s (see Fig. 1) expresses the fact
that all the decision digits at n = 1 are determined by
the initial condition. At each step, one additional initial-
condition digit moves into the perturbation region and is
randomized by the perturbation. If one averages over the
perturbation, the entropy increases by one bit per step

(doubling of phase-space area), so b,H(n) = n, until the
entropy reaches its maximum value, AH = q, at which
all information on the initial condition is lost.

The conditional algorithmic information EI„(n)has
quite different behavior, which we have calculated for
0 & n & q (see Table I). There are three regimes. For
0 & n & q —s —r, the entire pattern remains inside
a single perturbation cell—all decision digits are deter-
mined by the initial condition —so only one perturbation
map is applied at each step. The n digits afFected by
the perturbation are specified by bI„(n)= n bits. For

q —s r& n & q —s—, the pattern spreads over 2" « '
perturbation cells, in each of which n perturbed digits
have to be specified, leading to AI„(n) = n2"
For q —s ( n & q, the situation is more complicated, be-
cause now the subpattern in each perturbation cell con-
sists of 2" (q ') separate pieces. A perturbation map
cannot change the correlations between the pieces inside

TABLE I. Algorithmic and entropic contributions to the decrease in free energy as a function
of the number of steps n. The amount of information needed to keep track of the evolved pattern
in the absence of perturbations, given by AI, grows as logn. In the presence of perturbations,
however, the information to keep track of the pattern, given by AI + AI„,exceeds by far the
entropy increase DH that results from averaging over the perturbation.

0&n&q —s —r
q —s —r &n&q —s

q —s&n&q

log n
log n
log n

2n —(q—s —r )

n2" + 2" (n —q + s) (n + q —s —1)
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one perturbation cell. Since the information needed to
specify these correlations is equal to half the information
to specify the preceding perturbation maps, back to and
including the maps for n = q

—s, we find that

n —1

AI„(n)=n2" + ) j2-"
j=q —s

= n2" + 2" (n —q + s)(n + q —s —1).

For n & 0 the bottom two rows of Table I apply without
change to the case s & q & r + s. The bottom row

describes the n ) 0 behavior of the case q & s, provided
that one sets q = s in the formula for AI~. For arbitrary
q ) 0, we find that AI„(n)) AH(n) = n for 0 & n & q

and, moreover, that AI„(n= q) ) q2'.
We thus arrive at our key result: For the perturbed

baker's transformation, the information AI„needed to
keep track of the evolving pattern far exceeds the entropy
b,H that results from averaging over the perturbation.
This key result expresses a hypersensitivity to perturba-
tions. For the baker's map, it is a consequence of the
pattern's spreading over an exponentially large number
of perturbation cells—i.e. , phase-space cells whose size
is determined by the correlation lengths of the pertur-
bation. Hence, we expect this key result to hold for all
sensible perturbations of the baker's map. More gen-
erally, we expect all chaotic systems with positive KS
(Kol'mogorov-Sinai) entropy (or metric entropy) to dis-

play a similar hypersensitivity to perturbations [6]. In
contrast, classical regular systems should not display
such hypersensitivity. There is evidence [6] that quantum
systems, because of their phase freedom, display a hy-

persensitivity to perturbations similar to classical chaotic
systems, thus suggesting a new connection between chaos
and quantum mechanics.

It is worth spelling out the physical meaning of our key
result. Whenever AI„))AH, averaging over the pertur-
bation, which amounts to a coarse graining matched to
the strength of the perturbation, is a far better strat-
egy for preserving available work than is keeping track of

the perturbed system state in fine-grained detail. This
is a compelling justification for coarse graining in the
presence of a perturbation and for the accompanying in-
crease in entropy. There is a way around this conclusion:
the excess information needed to specify the fine-grained
pattern can be used to extract an equivalent amount of
work from the perturbing system. Given a split between
a system of interest and its surroundings, however, we
have provided an explanation of the second law.
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