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Statistical ensembles of flexible two-dimensional fluid membranes arise naturally in the description of
many physical systems. Typically one encounters such systems in a regime of low tension but high

stiffness against bending, which is just the opposite of the regime described by the Polyakov string. We

study a class of couplings between membrane shape and in-plane order which break 3-space parity in-

variance. Remarkably there is only one such allowed coupling (up to boundary terms); this term will be

present for any lipid bilayer composed of tilted chiral molecules. We calculate the renormalization-

group behavior of this relevant coupling in a simplified model and show how thermal fluctuations

effectively reduce it in the infrared.

PACS numbers: 87.10.+e, 11.17.+y, 68.15.+e, 87.22.Bt

Statistical ensembles of random geometrical shapes
pervade theoretical physics. Initially one-dimensional
curves in space were most thoroughly studied due to their
ease of description and the many applications of such en-
sembles to the conformation and dynamics of polymers,
but today ensembles of two-dimensional membranes are
at least as important. Physical realizations of such sur-
faces include lipid bilayers and surfactant films, which

spontaneously self-assemble from amphiphilic molecules
in solution or at fluid interfaces (for reviews see [1]).
More speculative applications as diverse as the 3D Ising
model and other 3D phase transitions, cosmic strings, flux
tubes in QCD, and models of elementary particles all rest
upon the key property that the important physical de-
grees of freedom in these problems are shapes with no
preferred choice of coordinates [2]. The condition that
the coordinate choice be immaterial greatly constrains
the possible forms of the statistical weights in these sys-
tems, leading to very few independent couplings and
hence physically simple models.

In this Letter we will study a model appropriate for the
description of tilted lipid bilayers (e.g., the lamellar L&.
phases of lyotropics or Sce phases of smectics), though
we think the analysis is potentially interesting in other
contexts as well. Bilayers are typically rigid, that is their
resistance to bending is characterized by a dimensionless
quantity tco—= tea/kttT (see below) which is greater than 1.
Accordingly, we will carry out a perturbative expansion
about xo ~, the high-stiffness, low-temperature limit.
Bilayers with free boundary conditions also typically ad-
just themselves to zero effective surface tension [31, and
we will also work in this limit [4].

We can summarize our logic as follows (further details
will appear elsewhere). At length scales far longer than
the size of the constituent molecules a continuum descrip-
tion becomes appropriate. In our nearly flat regime the
important degrees of freedom are the elastic (or "Gold-
stone") modes corresponding to transverse undulations as
well as director fluctuations if in-plane order develops.
We will find only a few allowed couplings of these modes,
as we expect in any elastic system at very long wave-

lengths: The system forgets most of the details about its
constituents. Somewhat surprisingly, however, the mem-
branes with in-plane order can remember at long scales
whether or not their constituent molecules are chiral,
even though this chirality is often a rather subtle property
of the arnphiphiles. Gross chiral behavior has long been
seen in monolayers, where one gets pinwheel domains
[5,6] as well as in flexible membranes which can form
helical ribbons [7] whose sense depends on the constituent
molecules' handedness [8]. We will see that this memory
follows from the existence of an allowed parity-violating
term in the free energy, which couples in-plane order to
shape [9]. When in-plane order is thermally destroyed
the theory admits no such terms; the system cannot ex-
press the chirality of its constituents even if present.
Indeed, experimentally a loss of gross chiral structure
does seem to accompany the chain-melting transition, and
chiral structures do not form at all above this tempera-
ture [8,101.

Thermal fluctuations are often important in mem-
branes at room temperature where xo ~ 40 is not too close
to infinity. It is well known that without in-plane order
such fluctuations induce a logarithmically scale-depen-
dent softening of the effective stiffness tc in the infrared
[11]. What we will show is that the unique bulk chiral
coupling, if present, similarly suffers a logarithmic renor-
malization. The renormalization-group behavior of this
chiral term seems not to have been studied before. While
some of our analysis will reproduce others' results, we
hope that our unified treatment of allowed free energy
terms will clarify some of the important symmetries; we
have also tried to clear up several subtleties in the fluc-
tuation problem [12]. Finally, the renormalization of
chirality will affect the average shapes taken on by mem-
branes, since the chiral coupling helps determine those
shapes. We will derive an anomalous scaling relation for
the radius of helical ribbons as chirality varies which
departs from the mean-field formula [131 and may be ex-
perimentally testable [14].

We begin by considering in greater detail the elastic
modes of our system. A membrane made of molecules
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m —m, n —n [16].
Our surface gets a few standard tensor fields. It inher-

its a metric g J =6;x 8~x, a corresponding covariant
derivative V, and a volume form d (Jg. Once we choose
a normal n, we also get a second fundamental form
K7=—n V;BJx and an alternating tensor

which slip around each other in some average 2D locus
with no in-plane order at all can be described just by
specifying a mathematical 2-surface x(() in 3-space. We
can choose coordinates g', i =1,2, for our surface, but we

must remember that this choice is arbitrary. The choice
of a flat reference surface breaks one transverse transla-
tion symmetry, giving one "undulation" mode. We can
visualize this mode as height fluctuations from a horizon-
tal plane. At high temperatures this is the only soft mode
we expect. At lower temperatures in-plane order can de-

velop, lea
ments do
(hydrated
order is di
tational q
an angula
tures well

alize the
field m(()

For hex
tions by 2

from the

corn pletel
new subtl
configurat
axis down

two sides

m(() is n

ly, one of
we may
molecule
there is n

free ener

0 1
a f

~ij ~ijan =&g
IJ

H2= d (Jg[alm K K m+az(m K m)(K';)+a3(m K m) +P~(m K m)(V m)
PCO 2

2 4

ding to additional soft modes. While experi- Here c;,,=8;x 8,x'ab„where eb„ is the usual alternating
not seem to see full crystalline in-plane order in symbol, a|23 +1. Note that e;~ and K;~ change sign un-

, unpolymerized) membranes [9], and such an der the change of normal n —n, m —m discussed
sfavored on theoretical grounds [15],still orien- above.
uasi-long-range order can survive, giving rise to Let us enumerate all allowed free-energy terms. We
r elastic mode. We will consider only tempera- assume all nonlocal interactions are absent or screened to
within the ordered phase. Hence we can visu- a length scale shorter than the scale of interest. Then we

corresponding order parameter as a unit vector simply seek all local terms in x(g) and m(g) with the
tangent to our 2-surface. above symmetries, relevant or marginal in the low-

atic in-plane order m is defined only up to rota- temperature or high-stiA'ness expansion. We will not seek
z/6. When the constituent molecules are tilted to derive such terms from some three-dimensional liquid-
surface normal they break rotation invariance crystal free energy, but instead simply construct them

y, so m has no periodic identifications, but a directly from the ingredients listed above. The relevance
ety arises instead. To define m(g) given a of an operator about the weakly fluctuating xp ~ fixed
ion of molecules, we must project the molecule point depends on its naive engineering dimension. The
to the midplane of the membrane. Since the only short-distance cutot in the problem is the charac-

of the bilayers are equivalent, the overall sign of teristic size A ' of the constituents. A ' is a 3-space
ot fixed until we choose one side, or equivalent- length, not a parameter-space length as in ordinary 2D
the two normal vectors n(g); with this choice quantum field theory, so when counting the dimensions of

use the convention where the projection of the operators we should consider only their behavior under
on the outward-facing layer defines m. Since rescaling x (not (') [17]. n and m are unit vectors and

o preferred choice of normal, each term of our hence dimensionless.

gy must be unchanged under the substitutions We can now list all the independent relevant and mar-
ginal terms allowed in the free energy:

K'

2" d

ging

[(K';) + y~(V m~)(V'ml)+ y2(m Vm')(m Vm;)], (I)

+Pz(K';)V m+P3K', V;m +P4m'K~;m V, m'], (2)
Cp

H~ = d (Jgm'e;JKllm'.

In these formulas we raise and lower i,j indices using g;~.
Most of these terms have already been discussed by Hel-
frich and Prost [13]; see also [18]. H~ is the usual
Canham-Helfrich elastic energy [19] with zero tension
[3], plus the covariant form of an X-Y model energy. H2
contains various anisotropies in the bending energy due to
the tilt of the constituents. y;, a;,p; are dimensionless
numbers we take to be —1, while vo is an energy scale we
take much larger than the temperature T (we set Boltz-
mann's constant =I). Every term of H~ z (every non-
chiral term) is marginal. H+ is the only allowed bulk
chiral term; it is relevant. As mentioned earlier, there are
no available relevant or marginal bulk chiral terms in-

volving only shape (no tilt).
In the enumeration (1)-(3) we have dropped all total
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(3)

derivatives, including for instance the Gaussian curvature
and the covariant form of the Vxm term [20]. Such
terms are important for systems with boundaries (e.g. ,

ribbons) or defects (e.g. , rippled phases), but they will

not aAect our calculation of the renormalization of co.
(Near defects one should also allow m to vary in magni-
tude [21].) What is remarkable about (1)-(3) is that
while there are a number of allowed couplings, still the
list is rather short, especially compared to a 2D scalar at
its trivial fixed point, for which infinitely many marginal
terms exist.

We will consider a limit in which xp= Kp/T is large but'
c'p IT is very small compared to the cutofl'. This is

reasonable since typically chirality is a very minor feature
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of the long-chain amphiphiles. Thus, we will carry all

our calculations out to lowest nontrivial order in the

loop-counting parameter (xo) and the chiral coupling
Cp.

We will calculate the effects of thermal fluctuations in

saddle-point (one-loop) approximation. Before we can do

the required integrals, however, we must fix certain
coordinate-choice redundancies in our description of a
surface. Our problem is that we have five variables x(g),
m(g) in (1)-(3),while as we have seen only two are truly

independent. We must first write x in terms of one in-

dependent field u (g). For our purposes, the easiest
choice is "Monge gauge,

" x(g) =(g', g, u(g)), since

nearly flat surfaces can be expanded easily in powers of u.

Next we may write m as m(&) =e)(&)cos8(&)+e2(&)
x sin8(g), where [e),e2} are a field of orthonormal

tangent vectors to the surface. e, depend on x(g), but
x does not fully determine them: We must fix an

O(2) gauge freedom. Monge gauge has the pleasant fea-
ture that we may choose e, =e,'8;x, where e,' =b",
—

2 8;u8, u+O(u ). This expression is not covariant
because Monge gauge is not. From now on we will raise
and lower indices using the plat metric b;z,

' all g;J factors
will be shown explicitly. Similarly, we convert index type
using 6,'; all e,' factors will be shown explicitly. The fact
that we can choose a frame with no O(u) terms will

make Monge gauge very convenient.
We now have all the necessary ingredients. When

viewing the system on a scale L»A ' we may forget

about irrelevant couplings; moreover all the efl'ects of
fluctuations on scales between A ' and (bA) '&'A

may be summarized by readjusting the values of our cou-

plings, since we took care to include all allowed terms and
our cutoff respects the symmetries. Our strategy is to ex-
pand u =u+h, 8=8+(, where u, 8 have only long-
wavelength components, while h, g have only wave num-

bers greater than bA [22]. We expand the free energy H
in h, g about u, 8, find the quadratic terms in h, (, and in-

tegrate the fast modes of h, g in Gaussian approximation
to get the one-loop effective "action" H, ff[u, 8] (see, e.g. ,

[23]) [24]. Finally we read off the renormalized chiral
coupling ceff.

To keep our formulas manageable we will truncate our
model (1)-(3), retaining only the first two terms of H)
and of course H+ (for more details see [12]). We expect
that the isotropic terms retained will give a good qualita-
tive guide to the effects of fluctuations on chirality. The
terms we have omitted will not be generated to the order
we are working, since they lack an extra O(2) symmetry
of the first two terms; nor can the chiral term induce
them to first order in co .

We want to pick off from H, ff the renormalized
coefficient of —,

' fg't m'e;~KJtm'. Since this is the only
parity-violating term, we pick terms in the expansion of
the logarithm which have an odd power of eo. Since we
work to lowest order in co, this means we keep exactly
one power, i.e., we simply renormalize the operator H+.
Using Monge gauge we find that

r) 2 ur(u[u2), +u2u))) —28'u)2]+ (4)

dependence of c,*ff, since in general the bare couplings will

have some unknown T dependence. However, we can
draw an interesting qualitative conclusion. The diameter
R of helical ribbons (and possibly tubules as well) is con-
trolled by a competition between chirality and stifl'ness.

Oversimplifying somewhat by omitting the V&m bound-

ary term (its effect is similar to that of H+ [13]), one
finds in mean-field theory that [13l R ~ xo/co. Since co
can be much smaller than the cutoff A, R can be very
large; indeed experimentally R can be -0.5 )um [7].
Hence thermal fluctuations can significantly modify the
mean-field result; we can approximately account for their
effects [12] by writing Reetc, ff/c ff(AR) Thus (6) .says
that varying cp for fixed xp, yi, T we have that the
cylinder radius scales not as R a: (co ) ' but as

( g )
—(1+TI4xLcg) (7)

The nice feature of (7) is that it may be possible experi-
mentally to control cp, without changing significantly the
other bare parameters, simply by diluting the chiral am-
phiphiles with similar but achiral analogs [25]. Thus (7)
is potentially a rather clean test of renormalization effects
in rigid chiral membranes. Whether the range of dilu-
tions admitting helices or tubules will be great enough,
and T/4ttx, ff can be made large enough, to test the scal-
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dc,*,(b ')
d lnb

CeffT

R'K'p fi
(5)

The constants a'O, y) were defined in (1). Strictly speak-
ing they too should be allowed to run, but as mentioned
they will arrive at the fixed line [15] (tcy)), ff 4lc ff.
Solving (5) we find

(b
—) ) (b

—I )
T ~~cll' (6)

the promised thermal softening.
Equation (6) should not be construed as a temperature

Hg = d ([u)2+8(u22 —u)))+8 )(uu)u )) u2u2
c()

where u„=8„u=8u/8(", etc. , and the ellipsis denotes
terms with at least five fields or at least three 8's. While
H, ff is a complicated power series in u, 8, we can unam-
biguously determine c,*ff by expanding H, ff to first order
in u and zeroth order in 8, since the first term breaks par-
ity and does not appear in any of the total derivative
terms dropped in (3). While u)2 is a total derivative, so
that this term seems to vanish, we can still compute it by
giving the coupling eo a small fictitious spatial depen-
dence in intermediate stages of the calculation.

We now quote the results of the calculation. Letting
D—= (T/4tttco)lnb ', H4, ,ff looks like H+ with co re-
placed by co (1 4D/y)). Hence we fi—nd that the eflect'
of fluctuations may be summarized by omitting them but
replacing cp by c,*ff, where
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ing law (7) remains to be seen. Even if not, (6) may still
be applicable to rippled phases [13].

We have seen how the constituents of a membrane can
express their chiral nature at long scales through the de-
velopment of in-plane tilt order, and how thermal fluctua-
tions can reduce the eAective value of the bulk chiral cou-
pling constant and in turn aA'ect the shapes of self-
assembled structures. Near the trivial, low-temperature,
fixed point the chiral term is relevant, but we have seen
how thermal fluctuations reduce its effective dimension.
This raises the possibility of a critical chiral membrane
when this term becomes marginal. Unfortunately this
will not happen at weak coupling, so we can say little
about this intriguing possibility.
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