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High-Order Multiple-Scattering Calculations of X-Ray-Absorption Fine Structure
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High-order scattering is found to be essential for the convergence of the multiple-scattering (MS)
theory of x-ray-absorption fine structure, both in the near-edge and the extended regimes. These
contributions are calculated using an ab initio curved-wave scattering-matrix formalism. Conver-
gence to full MS accuracy is demonstrated for fcc Cu, as well as for molecular Oz and Nz, where our
approach provides a high-order MS interpretation of the o' shape resonances.

PACS numbers: 78.70.Dm, 71.10.+x, 79.60.-i

Curved-wave multiple-scattering (MS) theory [1] pro-
vides a unified theory for x-ray-absorption fine structure
(XAFS) that encompasses both the extended (EXAFS)
and near-edge (NEXAFS) regimes. When carried to
all orders, this theory is equivalent to exact treatments
based on wave functions and Hamiltonian diagonaliza-
tions. However, because present computational methods
have limited applicability (such as to low-order MS [2],
full MS at low energies only [3], or MS in small clusters

[4]), there has been considerable speculation and contro-
versy [1—4] about the nature and extent of MS in XAFS
(e.g. , on the need for full MS in NEXAFS or the impor-
tance of nonshadowing MS in EXAFS). In this Letter
we introduce the first unified high-order MS treatment
of XAFS with sufficient speed and accuracy to treat ex-
tended systems at both low and high energies. We find
that neither full-MS nor low-order-MS theories are fully
satisfactory; low-order theories generally contain too lit-
tle MS, while much of that in full-MS theories is smeared
out by inelastic losses and thermal disorder. We show
this using high-order MS calculations for fcc Cu and for
molecular Oz and Nz. We find that the MS expansion
for Cu with up to 7 scatterers and about 10 paths con-
verges to broadened band-structure results, while calcu-
lations with about 10~ paths yield agreement with exper-
irnent out to 8.5 A. Similarly, the MS expansion for 02
and Nz with up to 13 backscatterings converges to full
MS Xa-scattered-wave (Xa-SW) calculations. Our ap-
proach also leads to a MS interpretation of the o' shape
resonances [5] that are observed in NEXAFS and greatly
simplifies their calculation. We demonstrate that such
resonances are special XAFS peaks, whose asymmetry
and location result from coherent high-order MS.

Our XAFS calculations are based on an automated
implementation of (i) the curved-wave MS formalism of
Rehr and Albers (RA) [6], (ii) an efficient method for enu-
merating MS paths, (iii) ab initio scattering potentials
and phase shifts that include inelastic losses [7], and (iv)
MS Debye-Wailer factors. We calculate the normalized
XAFS y = (p —po)/ps, where y, is the x-ray-absorption
coefficient and p,0 the smooth atomiclike background.

The absorption p is proportional to the projected pho-
toelectron density of states or, equivalently, to the imag-
inary part of a Green's-function matrix element. More
precisely, the MS expansion for the polarization-averaged
K-shell XAFS is given by a sum over all scattering paths
I', y = Zrlm(e ' 'Z (1rn~Gt~ Gt2GttG~lm)) (in
matrix notation). Here G is a free-electron propagator, t;
is the scattering t matrix at site i, bt is the l = 1 partial-
wave phase shift at the absorbing atom, and the outer
brackets indicate a thermal and configurational average.
The efficiency of the RA approach is due to a separable
representation of the electron propagators; it gives an
accurate curved-wave XAFS formula analogous to that
with the plane-wave approximation, but with scattering
amplitudes f(8) replaced by low-order (typically 6x6)
matrices E. For an N-leg path I' with scatterers at
Rt, Rz, . . . , R~ = Ro we obtain
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Here p, = p(R; —R, t), p = gE —V & is the photoelec-
tron momentum measured with respect to the muffin-tin
zero (in Rydberg atomic units), E is the scattering ma-
trix at sit;e i, M is the l = 1 termination matrix, So is a
many-body correction factor, and or2 is the mean-square
variation in total path length R&. The RA approach over-
comes the computational bottleneck of the usual angular
momentum basis [lrn) . For EXAFS, lm~ = 15—25, which
implies propagator-matrix dimensions of order 400—1000.
Indeed, this bottleneck generally limits exact methods to
the near-edge region or to triple scattering. We have
verified the adequacy of 6 x 6 matrices by using z-axis
propagators [6] that are virtually exact, but significantly
slower computationally. We have also found that the ap-
proaches based on the plane-wave or small-atom approxi-
mations [1] have unacceptable errors for many paths. We
illustrate our method with several examples.

Our first example is a comparison between our
approach and broadened linear-augmented-plane-wave
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(LAPW) band-structure calculations for Cu [8]. Because
of its close-packed structure and strong scattering poten-
tials Cu poses a severe test for MS theories. To avoid
ambiguity we used the same self-consistent potentials,
i.e. , the same real phase shifts (0 & t & 10) [8], and
essentially the same broadening. The band-structure re-
sults were broadened by a Lorentzian of width p =8 eV,
while a constant imaginary potential ImV = —p/2 = —4
eV was included in our propagators; these values give
a good approximation to the observed mean free path.
Making our approach practicable required the solution
of another computational bottleneck, namely, the prolif-
eration of paths. In fcc Cu there are of order 10 paths
of length less than the typical mean free path of about
20 A. , which sets the minimum cluster size needed for
full MS calculations. This number of paths is already
impractically large, and we therefore used filters in our
path enumeration scheme to reduce the number of paths
being considered [9]. This was done with a construc-
tive heap algorithm with cutoffs such that only paths
of length less than some cutoff distance and amplitude
larger than a given cutoE value are retained in the heap.
Physically equivalent paths are sorted using an N log2 N
hash sort, and only those with amplitudes above a second
cutoff are retained. For computational speed, plane-wave

amplitudes are used for these estimates. With this par-

ing algorithm only a few percent of the paths need to
be calculated. As a check on our path filters, the first
108000 unique paths with length &18.4 A. were calcu-
lated with and without cutoE criteria, and showed no
appreciable difference in the XAFS. A further study of
convergence between 18.4 and 23.4 A. involved relaxing
the criteria to double the number of paths considered,
and again showed no appreciable change. The total cen-

tral processing unit time for the calculations was about 3
Cray Y/MP hours. Our results are summarized in Fig. 1,
which compares the band-structure l = 1 projected den-
sity of states with our MS calculations. Note that our
results are approximately converged at all energies. Also
shown is an intermediate calculation with MS paths only
out to 18.4 A; note that the large peaks near 100, 140,
and 160 eV cannot be duplicated with only these paths.
These calculations show that high-order MS is essential
to reproduce the full XAFS spectrum.

Our second example is a comparison of our approach
with XAFS experiment for Cu at 190 K [10]. We focus
in this example on XAFS in position space, i.e. , on the
minimum number of MS paths needed to treat XAFS
contributions out to a given maximum path length.
This approach is useful in the analysis of XAFS ex-
periments, where long-path MS can be eliminated by
Fourier filtering [11]. We used scattering phase shifts
based on overlapped relativistic-atom muon-tin poten-
tials which take the core-hole potential and the self-

energy into account; they were calculated using our ab
initio XAFS cluster code [7], with an improved treatment
of low-energy losses [12]. Though not self-consistent,
these yield a good approximation to the scattering po-
tential in Cu [7]. Our treatment explicitly includes
MS Debye-Wailer factors based on radial disorder i.e.

A A

err——Z,&, ((u, —u, ) R,, (uz —u~ ) Rz~ ), where R,~
=

R, —Rz, i' = i + 1, j' = j + 1, and the displacement-
displacement correlation functions are approximated us-

ing an isotropic Debye model [13] with Debye temper-
ature OD ——315 K for Cu. Although better approxi-
mations for thermal disorder and inelastic losses would
be desirable, our results for the XAFS Fourier transform

y(R&/2) (Fig. 2) are in reasonable agreement with exper-
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FIG. 1. Comparison of 8-eV Lorentzian broadened band-
structure calculations of Cu XAFS (solid line) with high-order
MS calculations of y from this work: (long dashes) subset of
MS paths with length R~ &23.4 A and single-scattering paths
to 53.1 A, aud (short dashes) subset of SS and MS paths with
Rg &18.4 A.
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FIG. 2. Comparison of high-order MS calculations of Cu
XAFS from this work with So —— 0.906 (solid line) and
from XAFS experiment at 190 K (dashed line): (a) position
space Fourier transform y(R) and (b) in momentum space,

2k x(k). Here k is defined with respect to the Fermi energy,
k = y'E —Ep
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FIG. 3. MS calculations of the NEXAFS p y vs photo-
electron momentum p for molecular 02. (a) full spectrum
with up to n =13 backscattering (solid lines) and partial
sums with all paths up to a given number of backscatterings
(dashed lines); and (b) individual MS contributions p y„with
n backscatterings. Here p = gE —V q.

iment iaith only one adjustable parameter, an overall am-

plitude factor Sii
——0.906 (the value of the Fermi energy

was chosen to match the calculations). We find that just
15 of the 32 total paths with Ri/2 & 5.1 A. survive cutoff
filters set at 4% of the mean first-shell XAFS amplitude
and suffice to describe y(R) out to the fourth shell; none
of these paths has more than triple scattering. Moreover,
only 54 of the 17134 unique paths with Rq/2 & 8.466 A. ,

with the same cutoff, sufBce out to the twelfth shell and,
of those 54, paths with 5 and 6 legs were found to be
collinear.

For our next examples, we compare our MS calcula-
tions for molecular Oz and Nz with theory and experi-
ment. Such calculations provide another severe test for
MS theories because of the short bond length and strong
low-energy scattering in low-Z atoms. A goal is to un-

derstand the cr* shape resonances. These peaks are of
much interest since their locations in energy are corre-
lated with bond length [14]. The characteristic asymme-
try of the peaks is similar to that of three-dimensional
square-well resonances [15], but its fundamental origin
was not, heretofore, understood. Recently it was shown
that the cr* resonances are well described by Xo,-SW cal-
culations and correspond to the first enhanced XAFS os-
cillation [16],while Tyson et at. [4] have argued that the
shape of a resonance is due to constructive interference of
an infinite or large number of MS paths. We now give an
alternative XAFS interpretation based on high-order MS.
In particular we show that the resonances observed in Oz
and N2 can be explained simply by the confiuence of a
finite number of MS contributions from repeated bounces
between the two scattering sites. Our calculations were
carried out with an "extended-continuum" (cf. Tyson et
al. [4]) modification of our code, with the self-energy cor-

rection set to zero below the Fermi level, and again with
molecular potentials and phase shifts from our cluster
code [7]. The resultsfor 02 areshownin Fig. 3for p & 2.2

i, below which the MS expansion fails to converge.
Figure 3(a) shows how the resonance grows and sharp-
ens as successive MS paths are added. The overall agree-
ment with Xn-SW calculations [16] is surprising in view

of the simplicity of our scattering potential, and suggests
that self-consistency and the outer-sphere potential are
less important than the molecular potential within the
molecule for scattering calculations. A closer analysis re-
veals that several factors, especially the strong backscat-
tering amplitude and the coherence at resonance of the
MS phases, govern the nature of the resonance. From Eq.
(1) the MS phases vary as (n+ 1)pR+ 26i + O„, where
R is the near-neighbor distance and n is the number of
backscatterings. Thus the condition for constructive in-

terference of successive MS paths is 2pR+ 2b, C = 2m'.
where 2b, C' = C'„+z —@„and m is an integer, indepen-
dent of 6i. Hence the peak location(s) satisfies

p = (mm —~O)/R, (2)

which is a quantitative generalization of Natoli's rule

[14]. In general, where more than a single bond length
is involved, the location of shape-resonance peaks may
be expected to correspond to a stationary phase point
(modulo 2vr) of some subset of MS paths. For diatomic
molecules, EC is approximately twice the backscatter-
ing phase. Our value for the peak location p = 2.54 is
in reasonable agreement with the self-consistent Xo,-SW
value p = 2.7 [16]. Figure 3(b) shows that the individual
contributions y„ from each MS path are restricted to suc-
cessively lower wave numbers. This observation suggests
a fundamental difFerence between NEXAFS and EXAFS
on the basis of MS content. This is due in part to the MS
Debye-Wailer factors exp —(n+1)2cr2pz/2], where for 02
at 300 K, cr2 = 0.00136 z. These factors can dominate
convergence of the MS expansion for large n, since the
amplitudes vary only as ~IF/p~". However, in cases where

~F/p~ ) 1, the number of terms required to achieve con-
vergence may be so large that the path-by-path approach
implemented here is impractical. Similar calculations for
Nz (cf. Fig. 4) indicate that the shape of the resonance
is in good agreement with experiment [15]. In this com-
parison the experimental y = (p, —pe)/pe from polarized
data is multiplied by a factor 1/3 to compare with our
unpolarized calculation, and a factor So ——0.8 was used
in the theory.

In conclusion, we have developed a high-order MS ap-
proach that permits a unified treatment of XAFS at both
low and high energies [17]. A more complete account of
this work will be given elsewhere [18]. Our path-by-path
approach has a number of advantages over exact "black-
box" methods. In particular, the method permits a ge-
ometrical interpretation of XAFS, handles many thou-
sands of paths in arbitrarily large systems, builds in in-
elastic losses and disorder, and is easier to compute than
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wave-function methods. Our results support the obser-
vation that "shadowing" [1] is an important element of
the MS in EXAFS, but also show that it is not the only
consideration; noncollinear MS accounts for a substantial
fraction of the total amplitude. We also find that a rela-
tively small number of MS paths suffice to represent the
contributions in XAFS from the first few shells, in sup-

port of position-space XAFS analysis methods [11].Our
results also confirm that noncollinear MS is important in

the near edge [19], but they counter arguments that a
full-MS treatment or full MS within a given shell is nec-
essary [4]. Finally we have calculated MS Debye-Wailer
factors and shown that they can dominate convergence
of the MS expansion.
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