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Monte Carlo Simulations: Hidden Errors from "Good" Random Number Generators
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The Wolff algorithm is now accepted as the best cluster-flipping Monte Carlo algorithm for beating
"critical slowing down. " We show how this method can yield incorrect answers due to subtle correla-
tions in "high quality" random number generators.
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The explosive growth in the use of Monte Carlo simu-

lations in diverse areas of physics has prompted extensive
investigation of new methods and of the reliability of both
old and new techniques. Monte Carlo simulations are
subject to both statistical and systematic errors from mul-

tiple sources, some of which are well understood [I]. It
has long been known that poor quality random number
generation can lead to systematic errors in Monte Carlo
simulation [2,3]; in fact, early problems with congruential
generators led to the development of improved methods
for producing pseudorandom numbers. One of these, the
(Tausworthe) shift-register method, has been well tested
and used extensively for nearly two decades [4]. Even

better generators, from the same generalized "family" of
algorithms, have been discovered and their properties
have been carefully examined using a battery of math-
ematical tests [5]. Although the "quality" of a sequence
of random numbers is notoriously difficult to assess, all

indications have been that any residual errors from ran-

dom number generation were now smaller than statistical
errors in Monte Carlo studies. One result of this situa-
tion is that there have been a series of investigations of
critical phenomena by Monte Carlo and Monte Carlo
renormalization-group methods which yielded results

with heretofore unprecedented precision [6].
Although the Metropolis single-spin-flip Monte Carlo

method has been widely used for a broad range of simula-

tions [7], the limiting feature of these studies has been

the presence of long time correlations (critical slowing

down) which develop as the critical temperature is ap-

proached. However, new cluster-flipping algorithms have

been shown to dramatically reduce critical slowing down

[8]. The best of these methods, the Wolff algorithm [9],
generates large clusters on a lattice by connecting bonds
from the starting point to nearest neighbors with the
same spin with a probability

p =1 —exp( —2J/ktt T),
where J is the energy of a bond and T is the temperature.
This procedure is repeated for neighbors of the sites con-
nected to the starting point, etc. Simulations have been
performed on a number of Potts models, including the Is-

ing model, to study the time correlations, but so far there
has been no careful study of the accuracy of the thermo-
dynamic properties which are extracted from the config-
urations generated by this process.

Using an IBM RISC/6000 workstation, we have car-
ried out extensive simulations on LxL Ising square lat-
tices with periodic boundary conditions (for which exact
results are known [10]) using several difl'erent combina-
tions of algorithms and random number generators. We
have implemented the WolH' algorithm [9] using a recur-
sive cluster growth routine written in C. Additional sim-
ulations were performed using the Swendsen-Wang [11]
algorithm as well as a standard single-spin-flip Metropolis
algorithm with sequential updating. Several diA'erent

random number generators were used in these programs:
(i) A 32-bit linear congruential algorithm (CONG)

L„=(16807X„-~ )mod(2 ' —I ) .

(ii) Two diIferent shift register algorithms (R250 and
R 1279)

L„=Ln—]03.XOR. Ln —250 ~

Ln Ln —]063.XOR. Xn —
1 279 ~

where .XOR. is the bitwise exclusive OR operator.
(iii) A subtract with carry generator [12] (SWC)

Ln =L„-22—L„-43—C,

if L„&0, C=O,

if X„&0, X„=X„+(2 —5), C=1

(iv) A combined subtract with carry Weyl generator
[12] (SWCW)

Zn Ln —22 Zn —43 C,

if Z„~ 0, C=O,

if Z„&0, Z„=Z„+(2 —5), C=l;
Y„=( Y„ i

—362 436069)mod2

I„=(Z„—Y„)mod 2
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In the above equations, X„represents the random num-

ber used in the simulation. It is known that the perfor-

mance of a random number generator can be adversely

affected by improper initialization of its lookup table [4].
To avoid such problems, we initialized the tables for the

R250, R1279, SWC, and SWCW generators by using the

CONG generator to randomly set each bit of every in-

teger in the table.
The simulations were performed on a cluster of IBM

RISC/6000 model 350 workstations. Most of the simula-

tions were performed exactly at T=T„although addi-

tional simulations were also done at T =0.7 T, and

T=1.5T, . Between 5 and 10 runs of 10 updates were

performed [13].
Surprisingly, we find that the use of the "high quality"

generators [141 together with the Wolff algorithm pro-

duces systematically incorrect results. Simulations on a

16 X 16 Ising square lattice using R250 produce energies
which are systematically too low and specific heats which

are too high (see Table I). Each of the ten runs was

made at the infinite lattice critical temperature and cal-
culated averages over 10 MCS (Monte Carlo steps); the

deviation from the exact value of the energy was over

40a. Runs made using the SWC generator gave better

results, but even these data showed noticeable systematic

errors which had the opposite sign from those produced
using R250. In contrast, data obtained using the simple
32-bit congruential generator CONG produced answers
which were correct to within the error bars. Even use of
the mixed generator SWCW did not yield results which
were free of bias, although the systematic errors were
much smaller (2a for the energy and 4cr for the specific
heat). Use of another shift-register random number gen-
erator, R1279, resulted in data which were in substantial-
ly better agreement with exact values than were the R250
values. These data may be contrasted to those which
were obtained using the identical random number genera-
tors in conjunction with the single-spin-flip Metropolis
method and the multicluster-Ilipping approach of Swend-
sen and Wang [11]. For all combinations of simulation
methods and random number generators, the energy and
specific heat values (shown in Table II) are correct to
within a few o of the respective simulations; except for
the CONG generator with Metropolis and R250 with
Swendsen and Wang, the answers agree to within lo.

Data obtained for using the Wolff algorithm at T
=0.7T, and T =1.5T, showed some rather smaller devia-
tions which were to a great extent within the errors; the
specific heat exhibited the worst defects.

A possible explanation for these systematic effects lies

TABLE I. Values of the internal energy (top) and specific heat (bottom) for ten indepen-
dent runs with L 16 at K, obtained using the WolA' algorithm. The last number in each
column, labeled "dev," gives the diff'erence between the simulation value and the exact value,
measured in terms of the standard deviation a of the simulation.

error
dev.

error
dev.

CONG

1.453089
1.453107
1.452866
1.453056
1.453035
1.453198
1.453032
1.453169
1.452970
1.453033

1.453055
0.000030
-0.31o

1.499210
1.498099
1.498866
1.499150
1.499907
1.498127
1.498484
1.498532
1.499409
1.498814
1.498860
0.000182

0.82o

R250

1.455096
1.454697
1.455126
1.455011
1.454866
1.455054
1.454989
1.454988
1.455178
1.455162

1.455017
0.000046
42.09o'

1.447436
1.451072
1.446619
1.447657
1.450726
1.447349
1.448782
1.449522
1.449012
1.448098
1.448627
0.000467
—107.16o'

R1279
1.453237
1.452947
1.453036
1.452910
1.453040
1.453065
1.453129
1.453091
1.453146
1.452961

1.453056
0.000032
—0.27o'

1.497665
1.498049
1.497026
1.498608
1.499018
1.497292
1.498314
1.498801
1.496602
1.497887
1.497926
0.000250
—3.14o.

SWC
1.452321
1.452321
1.452097
1.452544
1.452366
1.452388
1.452444
1.452321
1.452306
1.452093

1.452320
0.000044
—16.95'

1.515966
1.515966
1.5l4664
1.512534
1.513009
1.513267
1.512298
1.513575
1.516258
1.514838
1.514237
0.000473
32.8lo

SWCW
1.453058
1.453132
1.453330
1.453219
1.452828
1.453273
1.453128
1.453083
1.453216
1.453266

1.453153
0.000046

1.94o

1.497988
1.497813
1.496413
1.497631
1.499337
1.496294
1.496332
1.497203
1.498850
1.496123
1.497398
0.000356
-3.68o.
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TABLE II. Values of the internal energy (top) and specific heat (bottom) for L =16 at K,
obtained using diN'erent random number generators together with Metropolis and Swendsen-
Wang algorithms. The values labeled "dev" show the diAerence between the simulation results
and the exact values in terms of standard deviations o. of the simulations.

error
dev.

METROP
CONG

1.452 783
0.000021

—13.250

SW
CONG

1.453019
0.000053

—0.86cr

METROP
R250

1.453 150
0.000053
1.62o

SW
R250

1.452988
0.000056

—1.36cr

METROP
SWC

1.453051
0.000080

—0.170

SW
SWC

1.453 23
0.00004
4.16'

error
dev.

1.497 925
0.000 179

—4.40cr

1.498 816
0.000 338
0.31o

1.498 742
0.000 511
0.06o

1.496 603
0.000 326

—6.47'

1.498 794 1.499 86
0.000430 0.00043
0.19a 2.65'

in subtle correlations in the random number sequence
which aA'ect the Wolff algorithm in a special way. Se-
quences of random numbers may appear in which the

high order bits are zero. In such cases these bits may
remain zero in newly generated random numbers. Since
the Wolff algorithm compares random numbers with only

a single bond probability, this eA'ect may lead to a very

small bias in the size of the cluster generated. As a com-

parison, in Table I we also show data which were ob-

tained at T, using R250 and SWC generators in which

every fifth random number was used. With this simple

modification the generators produced correct results. As

a further check, we performed an "inefficient" Wolff
simulation by growing all the clusters according to the
Swendsen-Wang procedure but then choosing only one

site at random and flipping the cluster to which it be-

longs. This modified algorithm did not exhibit the
dramatic errors of the efficient implementation, presum-

ably because the string of random numbers used to grow

the cluster was not generated sequentially. It has also

been found [15] that when the Wolf' algorithm is used to-

gether with Wolff's embedding scheme [9] to study the
classical spin Heisenberg model, no systematic diA'erence

can be found when compared with Swendsen-Wang or
Metropolis simulations. We believe this results because
each embedding generates a random bond Ising model

and the resultant variation in bond probabilities is enough

to destroy the effect of correlations in the random num-

bers.
The problems which we have encountered with the

Wo]A' method are, in principle, a concern with other algo-

rithms. Although Metropolis simulations are not as sen-

sitive to these correlations, as resolution improves some

very small bias may appear. Hidden errors obviously

pose a subtle, potential danger for many geometric simu-

lations such as percolation or random walks of various

kinds which generate geometric structures using similar
"growth algorithms" as the WolA method.

In conclusion, extensive Monte Carlo simulations on an

Ising model for which the exact answers are known have

shown that ostensibly high quality random number gen-
erators may lead to subtle, but dramatic, systematic er-

rors for some algorithms, but not others. Since there is
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no reason to believe that the model which we have inves-

tigated has any special idiosyncracies, these results ofl'er

another stern warning about the need to very carefully
test the implementation of new algorithms. In particular,
this means that a specific algorithm must be tested to-
gether with the random number generator being used re
gardless of the tests which the generator has passed.
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