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The methodology underlying a novel spectral analysis is presented for inelastic electron scatter-
ing from solids. Implementation of the method involves Fourier transformation of the measured
spectrum and deconvolution in the Fourier domain, spectral estimation using the maximum en-
tropy method, and line-shape analysis using Gaussian and Lorentzian functions, all performed in
the Fourier domain. The utility of the method is demonstrated for the case of vibrationally inelastic
electron scattering from CO adsorbed on Ru(001).

PACS numbers: 61.16.—d, 06.50.Dc, 68.45.Da, 68.45.Kg

Since the pioneering work of Propst and Piper [1], in-

elastic electron scattering from surfaces, also known as
electron energy loss spectroscopy (EELS), has become
one of the most important tools in the study of the
vibrational properties of solid surfaces [2,3]. Applica-
tions of the technique range from elucidating vibrational
structures of chemically and physically adsorbed overlay-
ers to mapping dispersion relations of surface phonons.
Some of the advantages of EELS compared, for exam-

ple, to an optical spectroscopy such as infrared reflection-
absorption spectroscopy (IRAS) [4,5] include the follow-

ing: (1) higher sensitivity, (2) wider dynamic detection
range, and (3) selection rules that permit observation of
optically forbidden modes (those oriented parallel to the
surface). The major disadvantage of EELS has been its
relatively poor resolution compared to optical spectro-
scopies. Much progress has been made in the past 25
years in the design and construction of electron beam
monochromators and energy analyzers and their asso-
ciated electronics [6], and recently Ibach's group have

published spectra with a resolution of 1 meV (FWHM
of the elastically scattered peak) [7]. It remains, how-

ever, rather difficult to obtain energy loss spectra with a
FWHM below 4—5 meV, and "high-resolution" EELS is

generally applied to those spectra with a FWHM below
10 meV.

Despite these remarkable improvements in the "hard-
ware" associated with EELS, the development of "soft-
ware" to process the data is still in its infancy. In studies
of metal oxide surfaces, deconvolution techniques have
been implemented to suppress surface phonon modes

[8,9]. Because of difficulties inherent in deconvolution
schemes [10,11],this technique improves neither the spec-
tral resolution nor the signal-to-noise ratio (SNR). Curve-
fitting techniques have been combined with measure-
ments of the instrument response function (the FWHM of
the elastically scattered peak in this case) with the goal of
obtaining the true linewidth of surface vibrational modes
[12,13]. This procedure is of limited use, however, since
a priori knowledge of the number of peaks in a spectrum

and their shapes is required, a problem that is common
to all curve-fitting schemes [14].

In this Letter, we describe a novel spectral analysis
method which is capable of eliminating all broadening
due to the instrument response function. A complete
discussion of our procedure, including all details and sen-
sitivity analyses, will be published elsewhere [15]. This
procedure allows, for the first time, a determination of
the natural line shapes of the physical or chemical sys-
tem being investigated. In addition to this improvement
in resolution, the spectral SNR is also increased by orders
of magnitude. Although we apply our method here to
the problem of vibrational EELS, the algorithm is quite
general and can be used in connection with any spec-
troscopy for which the instrument response function can
be obtained accurately from either experiment or theory.

A measured EEL spectrum can be expressed mathe-
matically as [15]

s(E) = i(E) * c(E) + n(E),

where s(E) is the measured spectrum as a function of loss

energy E, i(E) is the instrument response function [16],
c(E) is the transfer function of the chemical system (a
scattering function), n(E) takes into account noise, and
the symbol * denotes a convolution operation. Note that

c(E) = 6(E) + c,(E),

where b(E) and c,(E) account for elastic and inelastic
scattering, respectively. Substituting Eq. (2) into Eq.
(1) gives

s(E) = i(E) + i(E) *c,(E) + n(E) .

It is clear from Eq. (3) that the measured elastic peak
is an accurate representation of the instrument response
function. Since the elastic peak intensity is typically 2 to
3 orders of magnitude greater than those of the inelastic
peaks [2,3], i(E) can be determined experimentally with

high accuracy. Taking the Fourier transform of Eq. (1)
and rearranging terms gives
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S(r) N(r)

where capital letters denote functions in the Fourier do-
main, 7. Notice that the left-hand side of Eq. (4) may
be constructed from measured spectral data, and the first
term on the right-hand side describes fully the scatter-
ing function with no interference from the instrument
response function, i.e. , the latter has been deconvoluted
from the former.

The maximum entropy method (MEM) [17—19] may
be used for spectral estimation. In this connection we
define S(7), N(r)S'(r) = and N'(r) =

( )

which implies that S'(r) = S(r) +N'(r). We next define
a "cutofP' point, 7. ,„, in the Fourier domain such that

M

c(E) = 6'(E) + ) hl, b(E —El,), (9)

is used. Deviations from the true peak centers thus de-

pend on the spacing, relative intensities, and line shapes
of the individual peaks.

Although Eq. (8) supplies a rather accurate estimate
of the number of spectral peaks and the frequencies at
which they occur, the information regarding intensities
and line shapes is usually not accurate and varies de-

pending on the specific algorithm that is used and the
size of the autocorrelation matrix, B. In order to deter-
mine intensities more accurately, we note that most of
the inelastic peaks have a FWHM smaller than that of
the instrument response function. Hence, they can be
reasonably treated as 6' functions at this level of approx-
imation. Consequently, Eq. (2) may be rewritten as

and we solve

(6)

where hl, denotes the integral intensity of the kth vibra-
tional mode, normalized to that of the elastic peak. We
next define an error function in the energy domain as
follows:

c(E) =
m —1

1+ ).nee'~r~

8=1

(8)

The approximation in Eq. (8) is due to the trunca-
tion of S'(r). By taking the second derivative of Eq. (8),
the following information can be obtained: (1) the to-
tal number of spectral peaks, M; (2) the frequency of
each peak, El, (k = 1, 2, . . . , M); and (3) an approxi-
mate estimate of the intensities and linewidths of each
peak. Note that the total number of peaks may be in-
flated both by peaks resulting from a nonflat baseline in
the original spectrum and by peaks resulting from exces-
sive noise or extremely low count rates in that part of the
spectrum where they appear. The former are character-
ized by very broad peak widths (FWHM of a few hundred
to a few thousand wave numbers) after complete process-
ing, and the latter are characterized by their negligible
or even negative intensities during subsequent processing.
We found that, for isolated peaks, the accuracy of this
method is very high (frequency determination typically
to less than 1 cm l), but this is not the case for peaks
that are closely spaced due to the derivative method that

Rcx = qP,

where cx = (1,nl, o.z, . . .), P = (1,0, 0, . . .), and R;~ =
(S'(r„)S'(r„+, ~)), i,,j = 1, 2, . . . , m. Here, R is the au-
tocorrelation matrix, a is the autoregression coefficient
vector (to be determined), q is a scaling factor (also to be
determined), P is a unit vector, and m is the total num-

ber of deconvoluted spectral data points in the Fourier
domain that satisfy Eq. (6). The scattering function,

c(E), can then be estimated by

M 2

&z(l ) = ). s(E) —i(E) —):4i(E EI,)—
k=1

where h = (hl, hzr. . . r hM) . The solution of the equa-
tion

&lXz(h) =o

M

+modr. l(rr P) = 1 + ) hire
' " A, (r),

k=1

where

(12)

~a, A:B~(r) = exp —OUI„& lrl
' r

TP (hl r El r lllI, l r lllG, l r r hMr EMr lllI, M r &GM)

Here, mL, k is the Lorentzian width, and m~ g is the Gaus-

provides an approximate determination of the intensities
of the inelastic peaks. The accuracy is dependent on the
validity of the b-function approximation of Eq. (9).

The only remaining issue to be addressed concerns the
line shapes of the inelastic peaks, coupled with a refine-
ment of the peak intensities and positions. With this goal
in mind, we note that the intrinsic vibrational line shape
may be modeled as a Lorentzian function broadened by
a Gaussian function (due to a variety of fluctuations nor-
mally present in a real system). Consequently, we can
construct a system model as follows [cf. Eq. (9)]:
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sian width. Next we define an error function in the
Fourier domain as follows:

xF (p) —= ) l~(~) —1(~)&moaei(~, p) l (13)

and solving

'7v&F(p) lp=p. = (14)

provides the energies of the inelastic peaks, their inten-
sities, and their line shapes [20]. The system transfer
function c(E) may be obtained by evaluating the inverse
Fourier transform, i.e. ,

(15)
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FIG. l. (a) Measured HREEL spectrum in the specular

direction of a saturation coverage of CO on Ru(001) at 300 K.
(b) The approximate response function of the CO overlayer
given by Eq. (8). (c) The HREEL spectrum after complete
processing.

To demonstrate the power of our methodology, we have
applied it to a nearly saturated chemisorbed overlayer of
CO on Ru(001), corresponding to a 6 L (1 L= 10
Torrs) exposure at room temperature, a system that
has been well studied by low-energy electron diffraction
(LEED) [21], vibrational EELS [22], and IRAS [23]. We
have collected new vibrational EELS data for this sys-
tem with a modest resolution (FWHM of the elastically
scattered peak) of 6.7 mev = 54 cm, and the results
are presented in Fig. 1(a) in which 4096 data points were
collected with a channel resolution of 2 cm i and a to-
tal collection time of 1000 s. A full description of the
EEL spectrometer and the data acquisition scheme is pre-
sented elsewhere [2,15,24]. The system transfer function

c(E), calculated from Eq. (8) using Marple's algorithm

[19],is shown in Fig. 1(b); and the final EEL spectrum af-
ter complete processing is shown in Fig. 1(c). There are
three different CO stretching modes between 1900 and
2100 cm, and five frustrated translations and rotations

below 500 cm ' [including one at 226 cm i which is not
shown in Fig. 1(c)]. Harmonic and combination bands
are apparent between 700 and 900 cm, and between
2400 and 2500 cm . The three CO stretching modes
have a FWHM of 17 cm (for the 2049-cm ' peak),
29 cm i (for the 2007-cm peak), and 43 cm i (for
the 1931-cm peak); whereas the correlated frustrated
translations at 437, 395, and 334 cm have FWHM's
of 8, 10, and 9 cm, respectively. Although a full dis-
cussion of these data will be presented elsewhere [15],
there are two points to be noted here. First, using IRAS,
Pfniir et al. [23] observed a single band centered at 2048
cm with a FWHM of 12 cm for a saturation cover-

age of CO on Ru(001) at 300 K [cf. 2049 and 17 cm
in Fig. 1(c)]. Their slightly more narrow peak and the
absence of a small band at 2007 cm i suggest their over-

layer was somewhat better ordered than ours [25]. (Their
sensitivity would have precluded their observing the band
at 1931 cm i, even if it had been present. ) Furthermore,
if we assume that the integrated spectral density is pro-
portional to the concentration of the three difFerent kinds
of adsorbed CO, we find that 84% of the CQ is associ-
ated with the 2049-cm peak, 13% with the 2007-cm
peak, and 3% with the 1931-cm peak. The accuracy of
our frequency determinations is substantiated by the fol-

lowing: (1) The frequency of the dominant CO stretching
mode agrees with IRAS data to 1 cm; (2) our peaks on
both the energy-gain and energy-loss side of the elastic
peak agree within 2 cm i; and (3) the variation in fre-

quency among numerous different measured spectra (for
ostensibly the same CO overlayer) is less than 3 cm i.
The sensitivity of the method should be clear by compar-
ing Figs. 1(a) and 1(c). In this connection we might also
note that the CO stretching mode at 2049 cm ' on the
energy-gain side of the elastic peak was clearly observed
in the processed spectra even though its average count
rate was less than 1 count js.

Several final comments are appropriate concerning our
data processing procedure. First, since by definition i(E)
includes various properties of the surface, it must be de-
termined from each measured spectrum. Second, the am-
plitude of the elastic peak is irrelevant so long as i(E)
can be measured accurately and the detector is not op-
erated under saturation conditions. Most important, the
success of the method (resolution, sensitivity, and reli-

ability of line-shape determination) is a strong function
of the range of data in the Fourier domain [cf. Eq. (6)].
An accurate line-shape determination presents the great-
est challenge to the method; having a suKciently narrow
elastic peak and a measured spectrum with a suKciently
high SNR ensures the success of even this dificult en-

deavor.
To summarize, a data processing methodology has

been described that renders vibrational EE? S an
ultrahigh-resolution spectroscopy. Accurate peak posi-
tions, peak intensities, and line-shape functions may be
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extracted from measured EELS data. Our methodol-
ogy should revolutionize both vibrational and electronic
EELS measurements, and generalizations of it should find
broad applications in other spectroscopic techniques.

We acknowledge helpful discussions with Dr. S. Guan
concerning the MEM. This work was supported by the
National Science Foundation (Grant No. CHE-9003553).

[1] F. M. Propst and T. C. Piper, J. Vac. Sci. Technol. 4, 53
(1967).

[2] W. H. Weinberg, in Solid State Physics: Surfaces, edited
by R. L. Park and M. G. Lagally, Methods of Exper-
imental Physics Vol. 22 (Academic, Orlando, 1985), p.
23.

[3] H. Ibach and D. L. Mills, Electron Energy Loss Spec
troscopy and Surface Vibrations (Academic, New York,
1982).

4 F. M. HofFmann, Surf. Sci. Rep. 3, 107 (1983).
5 Y. J. Chabal, Surf. Sci. Rep. 8, 211 (1988).
6 H. Ibach, Electron Energy Loss Spectrometers: The Tech-

nology of High Performance, Springer Series in Optical
Sciences Vol. 63 (Springer-Verlag, Berlin, 1991).

[7] G. Kisters, J. G. Chen, S. Lehwald, and H. Ibach, Surf.
Sci. 245, 65 (1991).

[8] P. A. Cox, W. R. Flavell, A. A. Williams, and R. G.
Egdell, Surf. Sci. 152/153, 784 (1985).

[9) W. T. Petrie and J. M. Vohs, Surf. Sci. 245, 315 (1991).
[10] G. K. Wertheim, J. Electron Spectrosc. Relat. Phenom.

6, 239 (1975).
[11] A. F. Carley and R. W. Joyner, J. Electron Spectrosc.

Relat. Phenom. 16, 1 (1979).
[12] B.Voigtlander, D. Bruchmann, S. Lehwald, and H. Ibach,

Surf. Sci. 225, 151 (1990).
[13] C. Astaldi, A. Bianco, S. Modesti, and E. Tossatti, Phys.

Rev. Lett. 68, 90 (1992).
14] W. F. Msddams, Appl. Spectrosc. 34, 245 (1980).

[15) Youqi Wang and W. H. Weinberg (to be published).
[16] The instrument response function is defined here as the

convolution product of the kinetic energy profile of the
incident electron beam, the response function of the elec-
tron energy analyzer and detector, and a surface-related
function describing broadening due to surface roughness,
for example. A constant is also included to account for
surface reflectivity, normalization, and units conversion.
A detailed derivation is presented elsewhere [15].

[17] J. P. Burg, in Proc. 87th Meeting Soc. Exploration Geo-
physicists (1967); J.P. Burg, Ph. D. dissertation, Stanford
University, 1975 (unpublished).

[18] J. N. Kapur, MaxAmum Entrop-y Models in Science and
Engineering (Wiley, New York, 1989), and references
therein; Modern Spectrum Analysis, edited by D. G.
Childers (IEEE, New York, 1978).

[19] L. Marple, IREE Trans. Acoustics, Speech, and Signal
Process. 28, 441 (1980).

[20] The nonlinear optimization procedure of Eq. (14) re-
quires a good starting point to ensure reliable results and
rapid convergence. This is accomplished by using the re-
sults from both the MEM and the linear optimization
procedure [cf. Eqs. (8) and (11), respectively].

[21] E. D. Williams and W. H. Weinberg, J. Chem. Phys. 68,
4688 (1978); Surf. Sci. 82, 93 (1979).

[22] G. E. Thomas and W. H. Weinberg, J. Chem. Phys. 70,
1437 (1979).

[23] H. Pfniir, D. Menzel, F. M. Hoffmann, A. Ortega, and
A. M. Bradshaw, Surf. Sci. 93, 431 (1980).

[24] G. E. Thomas and W. H. Weinberg, Rev. Sci. Instrum.
50, 497 (1979).

[25] This is supported by the following two observations: (1)
The CO stretching peaks of Fig. 1(c) are dominated by
Gaussian (inhomogeneous broadening) functions; and (2)
peaks are present that are characteristic of very small
amounts of hydrogen and hydrocarbon contamination (at
1105, 1195, and 2966 cm ').

3329


