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Low-Threshold Subharmonic Generation in Composite Structures with Cantor-Like Code
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We show experimental evidence of extremely low thresholds for subharmonic generation of ultrasonic
waves in one-dimensional artificial piezoelectric plates with Cantor-like structure, as compared to the
corresponding homogeneous and periodical plates. The origin of this apparent anomaly is theoretically
investigated by studying anharmonic coupling between normal modes. We demonstrate that the large
enhancement of nonlinear interaction results from the more favorable frequency and spatial matching of
coupled modes (fractons and phonons) in the Cantor-like structure, with no need to invoke anomalous

modifications of the nonlinear elastic constants.

PACS numbers: 43.25.+y, 62.65.+k, 63.20.Pw, 63.50.+x

In recent years, harmonic properties of disordered and
fractal structures have been widely studied both experi-
mentally and theoretically [1]. As concerns the anhar-
monic regime, however, detailed experimental studies of
coupling processes between different vibrational modes
are still lacking in these systems. Indeed, while it was
pointed out that anharmonic effects may have a special
relevance if the interaction involves extended and local-
ized modes—as in amorphous or glassy systems [2]—the
available data are limited to frequency-integrated quanti-
ties such as thermal conductivity [2]. This is probably
due to severe difficulties in directly probing individual
coupling processes in microscopically complex materials.

On the other hand, in macroscopic resonators non-
linearity is known to couple normal modes, so that a net
energy flow is established from a driving frequency to
higher (harmonic) or to lower (subharmonic) frequencies
[3]. In particular, subharmonic generation is a threshold
phenomenon, which has been reported in the past in ul-
trasonic resonators [4] and more recently in periodic
media [5]. A macroscopic resonator with self-similar
structure is therefore a good candidate as a simple model
system whose dynamics retains the major features of the
above-mentioned complex materials—namely, the ex-
istence of localized and extended mode regimes— while
allowing direct experimental detection of nonlinear cou-
pling effects between selected vibrational modes, with
known spatial behavior, through the investigation of
subharmonic thresholds in the excitation power.

Recently [6], we reported on the linear acoustic behav-
ior of an artificial one-dimensional piezoelectric compos-
ite plate with hierarchical code. The existence of local-
ized (fracton) and extended (phonon) vibrational regimes
was experimentally demonstrated. In the present Letter,
we show that indeed subharmonic generation can be ob-
tained in this fractal structure, and that anomalously low
thresholds are found with respect to similar homogeneous
and periodical structures. Moreover, we directly measure
the surface displacement profiles of the coupled modes,
whose frequency and spatial overlap enter the theoretical
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expression of the threshold. We demonstrate that the ob-
served anomalous enhancement of anharmonic interac-
tion is due to the fact that—for a given fundamental
mode— much more favorable frequency and spatial
matching conditions are met with respect to homogeneous
and periodical structures, and no anomalous modification
of nonlinear elastic constants must be invoked to explain
our experiments. Thus, the “disturbing” assumptions [7]
previously introduced to explain anharmonic effects in
amorphous materials seem to be not needed.

Our sample (inset of Fig. 1) is a composite plate
formed by alternating elements of PZT (lead zirconate ti-
tanate) piezoelectric ceramic (grey regions) and epoxy
resin (black regions) following a triadic Cantor-like se-
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FIG. 1. Dispersion of the calculated (solid symbols) and the
experimental (open symbols) normal modes of the Cantor-like
sample sketched in the inset. Circles represent extended modes
[phonon regimes (a and ¢)], while triangles represent localized
modes [fracton regimes (b and d)]. For the definition of the
wave vector g, see Ref. [10]. The arrows mark the modes in-
volved in the anharmonic coupling (Fig. 2, curve a), whose ex-
perimental and theoretical displacement profiles are shown in
Figs. 3 and 4.
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quence up to the fourth generation. The sample parame-
ters are such that scalar propagation along x occurs in
the frequency range of interest [6,8,9]. Normal modes
are excited by applying an ac voltage V =V exp(iot) to
metal electrodes deposited on both sides of the sample;
their frequencies w are identified from peaks of the ad-
mittance curve in the linear regime (Vo=0.1 V). Sur-
face displacement profiles are then measured by an inter-
ferometric laser probe [6,8]. The resulting dispersion is
shown in Fig. 1 [10]. Different frequency ranges, as
identified in Ref. [6], are labeled a and ¢ for phonon re-
gimes, and b and d for fracton regimes. The theoretical
dispersion is also displayed in Fig. 1, showing excellent
agreement [10].

The nonlinear response of the system is studied by ap-
plying a voltage V of frequency o close to the frequency
w, of a normal mode n, and by measuring the frequency
spectrum of the excited vibrations as a function of the
amplitude V. If Vg is increased above a threshold value
Vh, sudden /2 subharmonic generation is observed (Vyy
is found to depend on the specific modes). The amplitude
of the w/2 subharmonic was measured as a function of
the applied voltage amplitude for the Cantor-like sample,
as well as for a periodical sample and a homogeneous
piezoelectric plate [11]. The results are shown in Fig. 2.
While typical values of the lowest threshold voltages ob-
served in the Cantor-like sample are V= 3-5 V, much
higher values (V,,=25 V) are obtained for the other
samples.

To explain this evidence, we used the following theoret-
ical model for subharmonic thresholds in our samples
[12]. We start by introducing anharmonic terms in the
one-dimensional wave equation:

0%u(x,t) _ dlo(x,t)+F(x,1)]
or? dx ’
where « and o are displacement and stress, respectively, p
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FIG. 2. Low-threshold subharmonic generation in the

Cantor-like sample (curve a) as compared with the correspond-
ing homogeneous (b) and periodic (¢) plates. The fundamental
mode is at frequency w, =385.5 kHz for the Cantor-like sam-
ple; @, =260 and 220 kHz for the homogeneous and periodic
plates, respectively.

is the mass density, and F=F s+ F.+ FnL includes not
only the second-order elastic term Fni, but also damping
(Fs) and source (F,) factors. If F(x,t) is small, the to-
tal stress o'(x,t) =o(x,1)+F(x,t) can be expanded in
terms of normal modes of the structure:

o'(x,t)=ZC,~(t)e Tl WD(x)+F(x,1) . )
j

With the assumption that the expansion coefficients C;(¢)
vary slowly with time, such that AC;/C; <1 within an
acoustic period, the time-dependent amplitude equation
for the nth mode becomes

dCy _ ie™" (L (n) 9F (x,1)
_— = —_— 3
& 2nj;u (x) ™ dx , 3)
where u ™ (x) is the normalized displacement and the in-

tegral is taken over the resonator length L. In an elastic
nonlinear plate excited at frequency o, Eq. (3) becomes

dc, iei(m,,—w)l .
= — 4, Cp+ VoI
dt Gnn 2w, 0
o't L OFNL(x,t)
le (n) NL\X,
+——2wn j; u (x)————ax dx , 4)

where the first and the second terms come from F,ps and
F., and the third is due to the nonlinear part FNL. a, is
the absorption coefficient of the nth mode, while

m_1 ) ) d3l(")
I f ()55 (o (5)

is the excitation term, with d3(x) and S¥% (x) nonuni-
form piezoelectric and elastic compliance constants, and
h the plate thickness. Fni is the nonlinear longitudinal
stress:

9u ©(x) 9uV(x)
dx ox

where c¢111(x) is the appropriate third-order elastic con-
stant. This last term can give rise to subharmonics if
oyt w;=w,. In the following we only consider half-
frequency subharmonics (0w =w; =w,/2), and adopt the
two-mode approximation (only two eigenmodes with fre-
quencies w, and w,, are close to @ and w/2, respectively).
By imposing the stability condition on the rate equation
(4), the threshold amplitude for subharmonic generation
is finally obtained:

Vin=D(w)/I.1, . (7)

FNL(X,I)=%C|1|(X) (6)

Besides the excitation term /., the threshold thus depends

on
(m)
10=_I;Lc|“(x) [ 9u ™ (x)

2
(n)
ou " (x) dx

o , (8)

ox

the overlap integral between the strain fields of the funda-
mental (n) and subharmonic (m) modes. D(w) is a fac-
tor which depends on the absorption coefficients a, on the
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FIG. 3. Experimental displacement profiles of the normal
modes (a) w,=385.5 kHz and (b) wm=wa/2 of the Cantor-
like sample. (The structure is sketched at the bottom; only half
of the x range is shown.) The anharmonic coupling between
these two modes, which is responsible for the subharmonic gen-
eration of Fig. 2, curve a is favored by the relatively large spa-
tial overlap between the square of the subharmonic displace-
ment (b) and the displacement of the fundamental mode (a) in
the region where the fracton mode (a) extends.

mismatch between the applied frequency @ and w,, and
on the mismatch between w/2 and w,,:

D(w) =wa?+ (0 —w,) 21" a2+ (0/2 — wm) 12,
9)

We have used Eq. (7) to calculate the threshold ampli-
tudes for our Cantor-like structure as well as for a period-
ic and a homogeneous piezoelectric plate. The eigenmode
frequencies and profiles were calculated as in Refs. [6,8],
in excellent agreement with experiments (compare, €.g.,
Figs. 3 and 4). Effective absorption coefficients were ob-
tained from the resonance widths in the admittance spec-
trum of the structures [a(w) < w; =103 s " at =200
kHzl. The third-order elastic constants for ceramic and
resin are taken as ¢y =—100c;;=—12.6x10'2 N/m?
9] and c¢;;1=9¢;;=4.9%10'" N/m? [13], respectively;
for the piezoelectric stress constant we have d3,/S%
=16.6 C/m? [9].

The lowest calculated threshold values are —~5 V for
Cantor, ~26 V for homogeneous, and ~30 V for period-
ical samples. Very good agreement is found with the ex-
perimental values of Fig. 2, except for the periodical com-
posite sample where the higher calculated threshold is
due to the small value of the excitation term /,: Experi-
mentally I, is higher than predicted, probably due to
small irregularities in the layer widths.

For a more detailed understanding of these differences,
we recall the main result of our model [Eq. (7)]: Given a
normal mode w,, for excitation at w =w,, the value of
the expected threshold V,—i.e., the ability of generating
the w/2 subharmonic—is determined by the existence of
a normal mode w,, with (i) small frequency mismatch
(wnm —®/2) and (ii) large spatial overlap between the
fundamental and subharmonic strain fields. In Figs. 5
(a)-5(c) we plot the overlap integrals I, between the fun-
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FIG. 4. Calculated amplitude of the surface displacement
profiles of the same normal modes as in Fig. 3: (a) w,=385.5
kHz and (b) wm = w./2 of the Cantor-like sample. (The struc-
ture is sketched at the bottom; only half of the x range is
shown.)

damental mode and the eigenmodes around /2 for the
three cases of Fig. 2. Clearly, the Cantor-like structure
presents several modes very close to w/2 which have high
spatial overlap with the fundamental mode; this is due to
the fact that here the fundamental mode is a localized
fracton and several extended modes exist at approximate-
ly half frequency, out of which one is easily found with
very favorable spatial matching (surface profiles of the
pair of modes which are coupled in the experiment of Fig.
2, curve a, are shown in Figs. 3,4). Such occurrence is
thus due to the simultaneous existence of a frequency
range with numerous localized modes, together with the
extended phonon regime at low frequencies (Fig. 1).

This is not the case for the periodical plate, where
dispersion prevents good frequency matching between the
fundamental and appropriate subharmonic modes. For
the homogeneous plate the mismatch is due to the sym-
metry of fundamental modes: Only modes symmetric
with respect to x inversion (odd n) can induce a subhar-
monic, as apparent from Eq. (8), so that w/2 will never
coincide with a plate eigenmode. In general, a detailed
analysis of the factors contributing to ¥y, demonstrates
that the small frequency mismatch and large spatial
overlap obtained for some modes of the Cantor-like
sample cannot be simultaneously obtained in the ordered
structures.

In conclusion, we have given experimental evidence for
low-threshold subharmonic generation in composites with
Cantor-like code, and we have shown that its origin can
be analyzed on the basis of the measured frequency and
displacement profiles of the individual modes involved in
the coupling. We have demonstrated that anomalously
favorable conditions for anharmonic coupling may exist
in fractal structures with respect to similar ordered struc-
tures, owing to the particular frequency distribution and
spatial extension of normal modes. It cannot be excluded
that similar conditions may occur in general disordered
systems: Investigation of this point is in progress. We
thus believe that our results may be of some importance
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FIG. 5. Overlap integrals I,, as defined in Eq. (8), for (a)
the Cantor-like sample, (b) the homogeneous PZT, and (c) the
periodical plate. The vertical arrow marks the frequency /2.

to the study of nonlinearity in other classical or quantum
wave phenomena.
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FIG. 1. Dispersion of the calculated (solid symbols) and the
experimental (open symbols) normal modes of the Cantor-like
sample sketched in the inset. Circles represent extended modes
[phonon regimes (a and c)], while triangles represent localized
modes [fracton regimes (b and d)]. For the definition of the
wave vector ¢, see Ref. [10]. The arrows mark the modes in-
volved in the anharmonic coupling (Fig. 2, curve a), whose ex-
perimental and theoretical displacement profiles are shown in
Figs. 3 and 4.



