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The kicked Harper model is numerically investigated. The long-time nature of the wave function dy-
namics and a multifractal analysis of the spectrum provide evidence for the existence of different re-
gimes marked by different spectral types and diffusion exponents, with a phase diagram substantially
different from that of the standard Harper model.

PACS numbers: 05.45.+b, 03.65.—w, 73.20.Dx

A thorough understanding of quantum dynamics of
systems with chaotic classical analogs represents a theo-
retical challenge of considerable interest. A number of
remarkable results have been derived in the last few

years, concerning features like eigenvalue statistics and
the emerging role of classical unstable orbits as an invisi-

ble skeleton underlying the organization of quantum
motion (see [1,2], to which we also refer for original
references). In particular, the investigation of the quan-
tum behavior of classically diffusive systems has unveiled
the phenomenon of dynamical localization, thus bringing
into light an interesting parallel with the quantum dy-
namics in disordered or incommensurate structures. This
parallel is especially close in a recently introduced model

[3], known as the kicked Harper (KH) model, which is

also the subject of the present paper. Under appropriate
conditions, this model exhibits some sort of diftusion in

both the classical and the quantum cases (the connection
between classical and quantum diA'usion is unclear
though). This marks an important difference from most
previously studied one-dimensional, periodically driven

models, where diA'usion is totally quenched by quantum
localization [4], and also with the standard Harper model
which exhibits diffusion [5] but has an integrable classi-
cal limit.

The KH model is obtained upon quantization of the
Harper map

p„+ ~
=p„+Ksin(x„), x, + ~

=x„—L sin(p„+ ~) (mod2n) .

This map (which can be considered as a discrete-time
version of the classical Harper model [6]) has been con-
sidered as a model of an electron in perpendicular mag-
netic and electric fields, and has also been related to the
problem of stochastic heating of plasma in a magnetic
field (see [7]). The corresponding quantum system has
been the object of many recent studies: It displays the
same type of duality that characterizes the Harper model
[8] and this gives strong mathematical support for the ex-
istence of extended quasienergy eigenstates in some re-

gion of the (K,L) plane [9]. As a matter of fact, earlier
references [10-12] suggested that quantum behavior is

quite akin to that of the Harper model, being character-
ized by the same kind of localized-extended-state transi-
tion [13]. Further analysis signaled dynamical anomalies
[14], and revealed a complex structure of the critical
(K=L) line, leading to anomalous diffusion and nontrivi-
al multifractal properties of the spectrum [15]. Our aim
is to characterize the phase diagram of this model, and to
show how it differs dramatically from the Harper case,
being characterized by a transition from localization to
unbounded spreading in the subcritical (K & L) region.

Quantization of the map (1) leads to the one-period
evolution operator

. L . . K
Ut, ~ =exp —i cos(h—n) exp —i cos(x)—

6 A

where n = —ir)/'r)x Quasiene. rgy eigenvalues and eigen-
vectors are determined by UL x. y =e ' y„. We will in-

vestigate the incommensurate case, with 6/2z given by a
quadratic irrational [our examples will concern the case
i'i =2m/(6+ pGM), poM = (1+J5)/2]. The "unit-time"
propagator of the standard Harper model is recovered via

the limit lim& UL, -1«-I. We recall that for the
Harper model (i.e., if the potential is not time modulated

by the 6 function), for K & L we get localization, while

for K & L all the states are extended (leading to ballistic
propagation); for K =L we have critical states [13] and a

diffusive dynamics [5]. Our main result here is that the
situation is actually much more complicated for the KH
model, leading to an essentially diAerent structure of the
phase diagram (Fig. 4) and to a coexistence of different
types of spectra in the various regions. If we fix I. and

vary K we indeed at first observe dynamical localization,
but as K increases a transition to unbounded spreading
takes place, characterized by some nonzero exponent a:
(hn, ) —r' For each suffi. ciently high L we indeed ob-
served such a transition at K=K*(L) &L: The main
feature of the phase diagram is thus a threshold for un-

bounded spreading which lies (for L big enough) in the
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Harper subcritical (localized) regi) re ion (we call this thresh-
old the KH critical line). We add a few remarks: i

Our investigation of parameter p
d t heck whether the threshold is given by a

smooth line. (ii) For very small L, K coincides wi

critical value K= . iii
thus artitionto classica y c a11 chaotic parameter pairs. We thus par i ion

the K & L region into two subregions: egions
ical localization, and(K (K*) characterized by dynamical

'
n II (K & K (L), exhibiting unbounded spreadingregion

lementar regiono t e ini iaf h
' 't

1 wave packet. The compleme y
'

ns I* and II*, dualK )L is in turn partitioned into regions an

(i.e., symmetric with respect to the line K=L) to I and

I I, respectively.
reofd-As re ards the localized or delocalized nature o y-

namics in the various regions we give numnumerical evidence
~1& the ion -time be-based on three diff'erent indicators: ~1& e g-

havior of the wave ufunction as characterized y the
tt (2) thed' (t) ) and the related exponent tt; esprea ing n,

'
n func-long-time be avior ob h

'
f the integrated autocorrelation

tion (IAF) C;„i(t)=t 'Zt ol&yolULtrl, yo l

b bilit of survival in the initial state; 3 a
1 sis based on the reconstruction of the spe-spectral analysis ase o

C tor-set-like construction t«a wetrum via a an o-
iven b therie describe. At each step a covering is given y

b d pectrum obtained by replacing wian spe

p
' ce of ra-al a roximation. n pI particular a natural sequenc

i
' «'

& is iven by successive trunca-tional approximants &p«'q„& is giv y
'

ns of the irrationaf the continued-fraction expansiontion o e
B using well-known techniques &~, ps [16] re lac-parameter: y usi

/
'

h / leads, via the Bloch theorem, to aing t't/2z wit p„q„ea
ose len th weband spectrum, consisting of q„bands whose eng we

denote by I;(„)
'

m (seeThe application o1' '
of the thermodynamic forma ism

[17]) to ana yze e ij 1 th h'erarchical presentation of the spec-
trum was pioneere y od b Kohmoto [18], and has been ap-

plied to investigate e cri
'

th critical line of the kicked Harper
model in [15], to which we refer the reader for e nitions

and elementary properties of the thermo ynamic func-
'd red [19]. In particular our interest will betions consi ere

f sed on the scaling spectrum sxpr, w ic escri e
distribution of band scaling factors ip& p;I„)—
logq„), defined by

d „'"'"'+"', s(p) = lim s„(p).
i 1

In practice t e convexth nvex envelope S(p) of the scaling spec-
trum is o taine ybt d by a saddle-point evaluation o t e in-

n ofte ral and a egen red L dre transform: The detection o
diAerences between the sca ing plin s ectrum and its convex

itions 20].envelope signals the appearance of phase transitions 2
Extensive work on tig - inht-binding Hamiltonians (reviewe
in [21]) supports the view that the thermodynamic or-

1 to understand the na-malism represents a powerful too o un e
r anal sis of theture of the limit spectrum: In particular, y

'

Harper mode ea s o e1 1 d t the following correspondence be-

0.75:—

0.5:-

0.25:-

0 I I ~ I I I I I ~ I I I I I I

0.8
I I I ~ I I I I I I ~ I I I I s s s II I I ~ I I I I I I I I I I

'1.2 1.6 2 2.4
p

0.75:-

0.5:-

0.25:-

I
I II ~ III I ~ 1ii II II I I I I I I I I

0 1 2

I'
I

I

I1, I
1

q
' I

II. I
y I g

' 1
I

I I
gI

I

I
II I

I
I II I

1 I
I I

I I
I I

I
I I

I
I
II
I \l
II
I 'II

I I
\ I

I I' I I I I I I ' I ~ I I I IU III I II I III II II I i I I II I

3 4 5 6

. I. (a) S( ) for different rational approximants solid
line: 5/38; dashed line: 13/99; dotted line: 34/259) or
L =2 notice the overall convergence to a limit curve. (b) S(p)
f d ff t tional approximants (solid line: 5 38. dashedor i eren ra

'

=7: Hi h-p be-ine: l3/99; dotted line: 34/259) for K=4, L =7: ig -p e-
havior exhibits nonconvergence (the dash-dotted line represents
th caling spectrum obtained by bin

'
g pnnin the p scale and plot-

=34/259 .ting a density histogram using bandwidths for p, q„—

tween s p an spec ra ed t 1 features: Absolute continuous
spectrum leads to a single point [s(p) =1 for p =1, an

den umera e anbl V Hove singularities contributing a van-
m leads( ) for =2], singular continuous spectrum lea s

ort lies into a well-defined scaling spectrum whose suppor
the p & 1 region, while in the case of the pure-point spec-
trum the limit w ic eh' h d fines s(p) does not exist, as bands
shrink faster than exponentially.

We now report our results concerning the structure of
The delocalized character of thethe parameter space. e

b alldynamics a ove eb th KH critical line is supported by a
the compute in ica ors.u

' d' t The spreading in momentum
10'e ersists over all integration time (t -3xspace persis s

f 2' un erturbedk' ks employing a Fourier basis of pic s, em
ve the criticaleigensta es ot t to follow time evolution above e

even when theline. The persistence of this spreading even w en

ero limit supportsI as apAF h parently settled to a nonzero
' '

pp
non due tothe view t a is

'
h t this is not a transient phenomenon,

unreso ve poin speco
'

t ctrum. A thermodynamic ana ysis o
the spectrum a ong e pr1 th reviously sketched lines allows in
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FIG. 2. Integrated autocorrelation function for K =4, L =2
(lower curve) (in the region dual to I), and for K=4, L =7
(upper curve) (region I I).

FIG. 4. Pictorial view of the phase diagram of kicked Harper
model. We show the critical KH line and its symmetry around

the K =L line. We also added the classical chaotic border over

which classical difl'usion takes place (classical line).

many cases for a finer spectral resolution than obtainable
via dynamical means, and yields results which agree with

the phase diagram partition based on dynamical proper-
ties. More precisely in region I (localization) we do not
observe any scaling feature, while region I* (dual conju-
gate to I) shows a well stabilized scaling spectrum (this
indicates a purely continuous spectrum); see Fig. 1(a).
Both region II and its dual II* display the coexistence of
stable portions of s(p) (left branch) with a high-tu tail
not converging to a limit [see Fig. 1(b)]. We interpret
these results as a strong indication of mixed spectrum,
containing both pure-point and continuous components.
This conjecture is confirmed by looking at the time
dependence of the IAF, which in region I* steadily de-
creases over all inspected time and is therefore likely to
tend to zero, while it approaches a finite limit (thus clear-

ly indicating the presence of a pure-point component in

the spectrum [22]) both in region II and for its image un-
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FIG. 3. Dynamical exponent a vs KIL for some fixed values
of L. Circles are for L =5 and 1.3 &K &7, squares for L =6
and 1.5 & K & 7, and triangles for L =7 and 1.5 & K & 8. No-
tice the minimum corresponding to the critical line. Each a was
determined by examining a time series up to 3 X 10 kicks.

der duality (see Fig. 2). This phenomenology reflects the

interchanging of continuous and pure-point components
under a duality transformation of the parameters [8].
Figure 3 illustrates some typical behavior of the dynami-
cal exponent a which was observed over the specified in-

tegration time: Notice how a decreases by passing
through the critical line (the choice of K/L in the figure is

not meant to indicate any simple scaling of the dynamical
exponent). The appearance of values of a diA'erent from
1 (already signaled in [15] on the critical line) is another
point of diA'erence with the available data for the Harper
model; at the same time, these regimes of anomalous
diA'usion definitely indicate that the long-time behavior of
the quantum KH model is hardly related to the underly-

ing classical dynamics. This fact, and the observation
that region I extends well beyond the transition to chaotic
difl'usion for the classical mapping, lead to the intuition
that the behavior of the KH model is not to be considered
an exception to the phenomenon of quantum suppression
of classical diA'usion.

We may thus conclude by illustrating the phase dia-

gram of the kicked Harper model (see Fig. 4): Region I

is characterized by dynamical localization and a pure-
point spectrum; its dual conjugate I* exhibits unbounded

spreading and a purely continuous spectrum. Both region
II and its dual conjugate II* are characterized by un-

bounded spreading and coexistence of continuous and
pure-point spectra (signaled by lack of convergence of the
rightmost branch of the scaling spectrum and nonzero
limit of the integrated autocorrelation function). In this

region the observed values of the diA'usion exponent and

the thermodynamic analysis suggest the existence of a
singular continuous component. Further analysis of the
multifractal structure of the spectrum and of its relation-

ship to the diAusion exponent is now in progress.
We acknowledge useful discussions with Dima Shepel-
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