
VOLUME 69, NUMBER 23 PH YSICAL REVI EW LETTERS 7 DECEMBER l992

Quantum Demolition Measurement of Photon Statistics by Atomic Beam Deflection
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We consider the deAection of a resonant two-level atom by a quantized electromagnetic field using
the Jaynes-Cummings Hamiltonian. We show that a joint measurement of the atomic momentum
and an appropriate field variable allows us to reconstruct the original photon statistics even for this
demolition Hamiltonian. We demonstrate that the momentum distribution of atoms scattered at
the nodes of the standing wave also follows the original photon statistics of the field. In this sense a
recent experiment on the optical Stern-Gerlach effect [T. Sieator et aL, Phys. Rev. Lett. 68, 1996
(1992)] measures the intensity fluctuations of the standing wave.

PACS numbers: 42.50.Vk, 03.65.Bz, 32.80.pj, 42.50.Dv

How can we extract information about a quantum sys-
tem? A first step is to couple it to a meter, that is a
system, which should be in a state approaching the clas-
sical limit [1]. A readout of this meter will then provide
information about the quantum system. A fashionable
example illustrating this measurement concept is atomic
deflection [2] from a quantized electromagnetic field [3]:
The quantum system to be measured is a single mode
of the electromagnetic field and the meter is a resonant
two-level atom interacting with this Geld. The momen-
tum of the deflected atom is strongly correlated to the
photon statistics of the quantum field [4].

But apart from a sensitive meter an e8'ective mea-
surement also needs a good measurement strategy. This
strategy depends on the choice of the interaction. The
quantum nondemolition (QND) scheme [5] relies on an
interaction between field (system) and atom (meter)
which does not provoke quantum transitions in the sys-
tem [6]. Only the phases of the energy eigenstates change.
Therefore the interaction preserves the photon statistics,
which then can be extracted via measurement of the
atomic variables [7].

In contrast a demolition interaction provokes transi-
tions and changes the original photon distribution. In
this case the meter is not able to give the original statis-
tics in all details, and we need a more intricate strategy.
In this paper we present such a strategy and show that
a joint measurement [8] of the atomic momentum and
the appropriate field variable allows us to reconstruct
the photon statistics W = ~iii [

even for a demolition
Halniltonian. This joint measurement selects those scat-
tering events in which the atoms have not changed the
field appreciably, that is, it restricts the data analysis to
those atoms which have passed through the nodes of the
Beld. Moreover, we show that a mechanical mask with

narrow slits at the nodes also creates a momentum dis-
tribution of the scattered atoms which follows precisely
the photon statistics. We emphasize that this demolition
strategy has a big advantage compared to the nondemo-
lition one: It is based on a resonant interaction which is
much stronger and therefore easier to detect experimen-
tally [9], as has already been shown in a recent experi-
ment [10] which scatters atoms at a node of a standing
laser Geld.

Consider the deflection of a two-level atom by a stand-
ing, resonant light field in a state [Q) = P pui ]m),
given in terms of number states [m) 11]. A de Broglie
wave of the atom in the ground state b) enters the light
field perpendicular to the wave vector. We describe the
interaction between the field and the atom by the reso-
nant 3aynes-Cummings Hamiltonian

H;„i ——pfp sin(kx) (cr+a + cr at),

where p and E'o denote the dipole moment and the "elec-
tric field per photon, " respectively. The annihilation and
creation operators a and at allow the excitation of the
field mode of wave vector k = 27r/A. The Pauli matri-
ces o+ and o account for the atomic transitions. The
electromagnetic wave is aligned along the 2; direction. In
the Raman-Rath regime we ignore the contribution of
the kinetic energy of the atoms, assuming that the trans-
verse displacement during the interaction time 7 is small
compared to the wavelength A.

For the spatial distribution of the atom before it enters
the light field we take [4(x)) = f(x) ~b), where f(x) de-

scribes the normalized transverse distribution of the de
Broglie wave. The state ~iIr) of the combined system of
atom and field before the interaction is the direct prod-
uct of the states ~ib) and [4), that is, ~Ci(t = 0)) = ~i/i(t =
0)) lC (x)). After the interaction it reads

~@(x,&)) = f(x) ) ui (cos[zvmsin(kx)][m}[b) —i sin[ K~msi n( kx)]~m —l)[a)), (2)

wher« = li~p&/h denotes the interaction parameter. Note that the interaction of the atom with the field has created
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a highly entangled state. Fourier transformation over x
gives us the amplitude of the final state in the momentum
representation:

tribution for the case when we ignore the information
stored in the field. We trace in Eq. (3) over the field as
well as the atomic variables and find

l@(P ~)&=) .~ 4c (P)lm&lb&+s (P)lm —»la&),
m=O

W(p) = ).l~ I'c'(p) +).l~ I'"(p)
m=O m=o

(8)

) . J2g+i(r ~m)
42~k

oo fg
de@ I

i(P+2z+l)8
qk

'

where

( ) ) ( W) dgf
I I

e'i(p+2l)s
v'2~k P)

(3)

(4)

In contrast to Eq. (7) the probability W(p), Eq. (8), does
not contain any cross terms m„m* . Hence all interference
properties are lost in this result.

To bring out the importance of these interference terms
we now consider a rectangular transverse distribution of
atoms which is constant over many wavelengths of the
standing light field. We perform the integrations in Eqs.
(4) and (5) and the momentum distributions W(p, y)
and W(p), Eqs. (7) and (8), read

Here Jg(z) is the 8th Bessel function, p = p/hk denotes
the atomic momentum scaled in photon momentum, and
8 = kz is the scaled length. We show that due to the
entanglement between the momentum p, the internal
atomic states, and the field states we can reconstruct
the original photon statistics of the field.

Now we calculate the probability amplitude to find the
atom with momentum p in an internal state

Ij) and the
field in a given reference state l&p&

= Q Op~lm&. The
corresponding scalar product reads

(jl(~l~(P ~)& = ).~ ( ~" c (P) (jib&
m=o

+v' is (P)(jla&)

The conditional probability W(p, &p, j) to find the atom
with momentum p provided the measurement of the field
has given the value &p follows from Eq. (6) after normal-
ization with respect to &p, that is,

w(p v,j) = IUI(v l@(p ~)&I' ) l(jl(v l@(p ~)&I'

We ignore the internal state of the atom, that is, trace
over la& and lb&, and arrive at

OO OO 2

W(p, p) = JV ) b'(p —E) ) ui J„(rvm)
m=0

(9)

and [4]

W(p) = ) b(p —l) ) lui
I J„(~vm) .

e=-~ m=0
(10)

(r m p) ~ cos(S——— )0( vm —p)

immediately suggests for the conditional distribution

We note that the spatial periodicity of the standing wave
has led to quantization of momentum in hk.

The role of the interference terms comes out in Fig. 1,
where we compare the momentum distributions W(p, Ip),
Eq. (9), and W(p), Eq. (10), for the case of a highly
squeezed and displaced state [12]. We note that W(p)
follows closely the photon statistics W, shown as the
lower curve of Fig. 1, while only a few features of W
survive in W(p). This is a consequence of the fact that
the kernel of the sum Eq. (9), J„(K~m), due to its os-
cillatory character, acts more like a delta function [13]
than the kernel J2(r~rn) in Eq. (10), which extends over
a broader region. We replace in Eq. (9) summation by
integration; then the asymptotic expression [4]

W(p, (p) =JA ) QJ &p ~(p) + ) ii) &p is (p)
(2pl

W(p, cp) = JVI I
W („g„)~,

m=0 m=0

OO OO 2

W(p, p)=JV ) u) c (p) + ) iii s (p)
m=0 m=0

(7)

Now we compare this expression to the momentum dis-

where JV accounts for the normalization.
Assume that the amplitudes y~ of the reference state

Ip& vary slowly with m in the region where iii essentially
divers from zero. In this case we can factor them out of
the sum and arrive at

whereas the total distribution W(p), Eq. (10), reduces in
the same approximation [4] to

()—=
(py„)~ err Qm —(&)2

f
OO

CLQ Sm —(p/~)&+@'2 ~

XK O

We emphasize that the direct mapping of W on W(p)
requires large tc values. In some sense this implies the
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FIG. 1. The photon statistics of a squeezed displaced state
of squeezing parameter s = 50 and displacement parameter
a = 10 (lower curve) and its readout via the momentum dis-
tributions of deflected atoms, Eqs. (9), (10), and (12) with
interaction parameter K = 110. The curve W(p, y = 0) corre-
sponds to a joint measurement of the atomic momentum and
the field phase, Eq. (9), whereas the distribution W(p), given
by Eq. (10), ignores the field phase. The top curve, W „i,(p),
Eq. (12), gives the momentum distribution of atoms filtered
by a mask of slit width d = A/10 placed at the nodes of the
standing wave. The joint measurement strategy gives an ade-
quate readout, while ignoring the Geld phase results in an less
eff'ective readout as well as in additional rapid oscillations.
We note that there is a modulation on the left side of the Grst
maximum of W(p, p = 0) and the period of the oscillations
is slightly different from W . The latter results from a beat-
ing between the oscillations in the Bessel function and the
oscillations in W in the sum Eq. (9). The jagged structure
at the first maximum is a result of the discrete summation
over m and is an early manifestation of the revival structure
in W(p) around p/r = 5. This rapid contribution becomes
more dominant for increasing K. The momentum distribution
W, p obtained by the mask does not show the rapid part
and the period of the oscillations in p matches those in W

transition to a classical meter. The experimentally ac-
cessible values for v reach from K = 1 [14] in the optical
regime to K = 120 in the microwave domain [6].

Now we return to the key assumption used in deriving
Eq. (7) and ask for a reference state ~y) which has slowly
varying amplitudes y . For real coeKcients m it is
the London phase state [15] corresponding to zero phase,
~p = 0) = (27r) i~~ P o ~m), which makes Eqs. (7)
and (9) exact. This state brings out the physics of this
joint measurement strategy: From all scattering events
we keep only those which have not altered the phase of
the initial field state. This of course requires that the
original Beld had a rather well-defined phase. This im-
plies that the initial photon distribution is rather broad
compared to the oscillations of the Bessel functions. A

field being initially in a single number state ~mo) violates
this condition. Since the Fock state does not have a well-
defined phase a joint measurement cannot improve over
an ordinary measurement. The conditional momentum
distribution W(p, y) = J2(rcvme) = W(p) is therefore
identical to W(p).

An experiment based on this joint measurement strat-
egy must compare the phase of the Beld state after the
interaction to that of the initial state. Only when they co-
incide do we record the momentum of the scattered atom.
Such an experiment might be difficult to realize. How-

ever, the key feature of this joint measurement strategy
is to select those scattered atoms which created a min-
imum of disturbance of the field. These are apparently
the atoms which have passed through the nodes of the
field and hence the selection caused by the joint measure-
ment procedure plays the role of a spatial filter. A mask
put in front of the electromagnetic field which transmits
atoms only in the vicinity of the nodes of the standing
wave works in the same way [16] and therefore gives an
adequate readout of the photon statistics. Indeed in this
case the initial spatial distribution f(x) consists of rect-
angular peaks of width d (& A centered at the nodes of
the field. We perform the integrals in Eqs. (4) and (5)
and arrive at the momentum distribution of the scattered
atom:

W -k(p) = ). ~(p —&) ) . l~ I'g (p kd)
e=-~ m=O

where

g (p, kd) = 2 ) J, p(K~rn)
sin(r kd/2)

r Qrrkd
(13)

i sin [(]p) —~~rn)kd/2]

((p[ —learn) (kd/2)
(14)

In the limit of large r, g is a distribution sharply peaked
at ~p~

= r~rn, and hence selects the term W ip/ )2 out
of the sum Eq. (12).

We note that Eq. (12) is valid provided that (i) the de-
flection of the atoms in the light wave is small compared

(r a)to the wavelength, i.e., r i2Ml K « 1, and (ii) the width d
of the slit cannot be too small as to avoid diKraction, i.e. ,

hkr/M « d. In order to achieve an adequate readout
the function g~ has to be narrow compared to the typ-
ical variations of the photon distribution, i.e. , 1 (( ~kd.
All three conditions have been satisfied in a recent exper-
iment on the optical Stern-Gerlach eKect using a beam

The i;op curve of Fig. 1 shows this momentum distribu-
tion W, k for atoms sent through such a mask. It repro-
duces precisely the photon statistics. The mathematical
reason lies in the behavior of g for kd (& 1: The func-
tion r i sin(rkd/2) varies slowly over the oscillations of
the Bessel function which then acts as a delta function,
and Eq. (13) reduces to
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of metastable He atoms [10]. There a single slit of width
d = 2 pm has been put in front of a standing light wave
of period A = 15 pm. Although in this experiment the
scattering does not occur from a quantized field, but from
a laser field, we think that it is the first indication that
deflection of atoms at the nodes is a sensitive probe for
the intensity fluctuations in the wave: The finite width
of the side peaks in Fig. 3(b) of Ref. [10] reflects the
fluctuations of the scattering wave.

We conclude by noting that this photon-distribution-
from-node-scattering method is not restricted to the on-

resonance Hamiltonian but of course could also be ap-
plied to the QND off-resonance case [8]. Moreover, this
method does not require small cavity decay rates since
only one atom has to be scattered and not many consec-
utive atoms.
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