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It has been claimed that the kinetics of reactions of the form 4 +B— 0 can be well described using
the Kirkwood superposition principle to decouple n-body correlations into products of pair correlations.
The strength of this approximation is assessed through its predictions for the nearest available neighbor
recombination scheme, for which analytic and Monte Carlo results are available. It is shown that it is
much more successful than classical kinetics because of the inclusion of spatially nonuniform pair corre-
lations, but fails asymptotically at large pair separations or long times because of the neglect of higher

correlations.

PACS numbers: 82.20.—w, 05.40.+j, 72.80.Ng, 78.55.—m

The last decade has seen a rapid growth of interest in
reactions of the form 4+ B— 0 in situations where the
motion of the reactants is not fast enough to keep their
densities uniform everywhere—for a review see Ref [1].
For such reactions, classical kinetics fails and reaction
rates become much slower than, for example, the bi-
molecular prediction for equal initial concentrations of A
and B. Whatever the detailed recombination mechanism,
such reactions have a common essential feature in the
evolution of segregated clusters of like particles which
originate in the initial spatial fluctuations of [4] —I[B].
At long times the existence of these clusters dominates
the recombination and produces a characteristic asymp-
totic behavior.

Three specific recombination mechanisms have been in-
vestigated, two of them approximately describing physical
processes and the other an artificial model which em-
phasizes the statistics. Thus diffusion limited reactions
(DL) [1], tunneling limited reactions (TL) [2], and
nearest available neighbor (NAN) [3-7] reactions have
all been discussed, usually, though not always, by either
scaling arguments or Monte Carlo simulations. In the
NAN scheme A4 -B pairs recombine in strict order of sep-
aration; the closest pair in an initially random distribu-
tion is removed first, then the next, and so on. Thus for
NAN, the recombination distance R, i.e., the separation
of the closest unlike pair at any stage of the recombina-
tion, replaces time as the ordering variable; time does not
enter the NAN scheme. R is conveniently measured in
units of the initial pair separation. At large R and in D
dimensions, NAN scaling arguments [3] lead rapidly to
the result that the pair population decreases asymptoti-
cally as CR ~?/2 for R— 0. With the possible exception
of D=1 (cf. the discussion of Eggert’s conjecture below),
the only information on C comes from Monte Carlo simu-
lations.

The asymptotic decay has this form for all three
recombination mechanisms; in DL reactions the reactants
move around by a random walk with distance mapping
into time as R— ¢ "2 so that the pair density falls as
¢+ ~P’% In TL the mapping is R — Roln(w?), where o is
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a hopping rate preexponential and Rg a characteristic
interaction range, and the pair density follows [Rj
xIn(wr)] ~P/2. There may be some upper limit on D, for
example, D < 4 for DL [1]. Since the asymptotic behav-
ior is mechanism independent, NAN provides a unifying
model.

At short time or small R the classical kinetics of the
stirred reactor are maintained. Analytic methods capable
of describing the approach to the asymptotic region,
which must be recombination mechanism and D depen-
dent are lacking. Limits exist, but the only analytic ex-
pression proposed is due to Eggert [5] for NAN in one di-
mension. His expression covers the whole range, includ-
ing the asymptotic limit; it is supported by independent
Monte Carlo simulations [6,7]. Eggert’s conjecture came
from an analysis of small 4-B clusters and, though per-
suasive, remains to be proven. Thus any other method
which assists analytic investigation is welcome.

Recently, Schnorer, Kuzovkov, and Blumen (SKB) [8]
have suggested a method for TL recombination with
equal initial concentrations. They derive an exact expres-
sion for the recombination rate in terms of an unlike pair
correlation function, then use the Kirkwood superposition
approximation to obtain this function. This procedure
truncates the infinite hierarchy of rate equations involving
increasingly large clusters by writing three particle corre-
lation functions approximately in terms of like and unlike
pair correlation functions. For brevity, this approach is
referred to here as the SKB-K (for -Kirkwood) method.

SKB tested their model against a Monte Carlo simula-
tion, calculating not only the decay [population n(z)
versus time] but also the time evolution of the two pair
correlation functions. Generally the agreement was good
and at short times was excellent. At long times, they
claimed that the decay approached the asymptotic form
n(t)~ln(wr)] =2 expected for TL together with D=1.
They noted, however, that at (very) long times the like
pair correlation function calculated from the SKB-K
method began to exceed that gotten from the Monte Car-
lo simulation at small separation r. The unlike pair func-
tion did better since it was zero out to about r— Ry

© 1992 The American Physical Society



VOLUME 69, NUMBER 22

PHYSICAL REVIEW LETTERS

30 NOVEMBER 1992

xIn(wt) as expected.

It is clear that the SKB-K method gives a useful ap-
proximation to the TL decay problem; however, SKB
claim *“astonishingly accurate results” and recommend
their approach as a powerful analytic method. This sug-
gests that others should look for its limitations. One con-
cern with the SKB-K method is that it appears to yield
the correct asymptotic n(z) but not the correct like pair
correlation function. However, since in the time domain
the recombination of close pairs persists to long times, er-
rors in the number of more distant pairs may be largely
hidden. That is, the number of surviving pairs at time ¢
given by

n(t)=—J;mexp[—wtexp(—R/Ro)]%dR W)

is dominated by recombinations at small R. So long as
the form of n(R) is correct at small R, Eq. (1) will pro-
vide a good approximation to n(t) to long times, though
not asymptotically. Thus to examine the validity of the
SKB-K method, which is essentially a spatial argument,
one should compare the predictions with those of NAN
which operates directly within the space domain.

Making the comparison turns out to be rather straight-
forward, since the replacement of the quantum mechani-
cal exponential by the delta function of NAN simplifies
the calculation of the SKB-K model considerably. As an
example, consider SKB’s Eq. (4) which gives the pair
population n(¢) at time ¢ in terms of the time-dependent
unlike pair correlation function Y (r,):

d"T‘t’) =12 [, WY (0,
where w(r) is the reaction rate at distance r. For NAN

we have instead

dn(R) _

p— 2 * r__ ’ '
IR n(R)j:) 8lr'—=R|Y(',R)dr

=—2n2(R)Y(R,R). )

R, the distance to which pairs have recombined, replaces
t in NAN and the delta function ensures that recombina-
tion only occurs at r==* R. The equations which SKB
get for the pair correlation functions via the kinetic equa-
tions and the Kirkwood approximation [their equations

| (6) and (7)1 simplify in a similar way to give

llnx(r,R)I/OR=—2n(R)Y(R,R)IY(r—R|,R)+Y(r+R,R) —2] 3)

and

allnY(r,R)1/OR=—6|r—R|—2n(R)Y(R,R)[X(r—R|,R)+X(r+R,R) —2]. 4)

X(r,R) is the like pair correlation function. Equations |

(2)-(4) can then be integrated numerically to find n(R).
Figure 1 shows the comparison of n(R) calculated in
this way with the asymptotic limit

n(R)— Lexp(—y/2)R ~'2=0.3746R ~ 7 (5

of Eggert’s expression [5]

=
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FIG. 1. The pair population n(R) remaining after recom-
bination to distance R. The straight line shows the asymptotic
limit from Eq. (5) and Monte Carlo simulations. The points
are from Egs. (2)-(4) derived from the SKB-K approximation,
and the curve from the classical kinetics of Eq. (7).

dllogn(R)1/d(logR) =lexp(—4R) —11/2, (6)

where y is Euler’s constant. Equation (6) is known to be
analytically correct at small R, to give the right asymp-
totic slope, and to be in close agreement with the Monte
Carlo simulations. The SKB-K n(R) approaches the
asymptote accurately, follows it briefly, but then drops
away faster than it should. The difference between these
two curves shows the limits of the SKB approximation.
At R =5 the discrepancy is about 10%.

Figure 2 compares the logarithmic slopes dllogn(R)]1/
dllog(R)] from Egs. (2)-(4) and from Eq. (6). The
latter shows the expected power law with slope — § at
large R; interestingly, the SKB-K approximation also
produces an apparent power-law asymptote, with a slope
in our most accurate integration of ¢ =—0.56. In the
time domain, the SKB-K approximation therefore leads
to n(¢)~I[In(wt)19, with ¢ < % falling faster than the
true asymptote. SKB results show just such an underes-
timate (their Fig. 2).

These results are readily compared with those of classi-
cal, stirred kinetics where the distributions remain un-
correlated, ie., Y(r,R)=X(r,R)=1 at all r and R.
Equation (2) immediately yields

n(R)=1/(1+2R). @)

This system acts as a lower limit to n(R) in the NAN
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FIG. 2. The logarithmic slopes of n(R) from the SKB-K ap-
proximation (points) and Eggert’s Eq. (6) (line).

scheme because the effect of correlations is always to slow
the reaction by separating unlike pairs. For NAN, the
approximation fails from the beginning, since Y(r,R)
must be zero for r < R. There is for NAN no distin-
guishable equivalent of the SKB’s “raw” approximation,
with unlike particle correlations only because this makes
Y(r,R) a unit step function at r =R which via Eq. (2)
again yields Eq. (7).

Equation (7) is thus also the result of the approxima-
tion used by Dunstan [9] and critically discussed by Eg-
gert [10], though derived in a rather different way here.
Figure 1 shows that for R $0.4 all approaches agree well
because little segregation has occurred. Unlike the
SKB-K result, n(R) from Eq. (7) never approaches the
asymptotic slope; it is in this region that the SKB-K ap-
proximation is most successful.

Figure 1 shows that the SKB-K approach breaks down
seriously, i.e., n(R) is 10% below the true asymptotic
value, when R~5. Since SKB used an unscaled interac-
tion length Ro=35 and an initial interparticle separation
of 10, we use R =0.5In(w?) to map to time. Then break-
down occurs roughly when ot = 2% 10%, though this esti-
mate ignores the important contribution at this time from
earlier decays [cf. Eq. (1) abovel. Nonetheless, by these
times SKB’s integration of the SKB-K approximation
(their Fig. 2) is significantly below and outside the scatter
of their TL simulation, as expected. Even with a tunnel-
ing preexponential slower than a typical dipole allowed
transition, e.g., o = 10% s 7!, this failure will occur at 20
ms. A real steady-state experiment will certainly reach
into much longer times.

Another and perhaps more important measure of the
limits of the SKB approach is 1 —n(R), i.e., the remain-
ing population when the approximation fails. Using the
10% discrepancy discussed above as a criterion, the SKB
method fails when some 15% of the carriers still remain.
Their approach therefore cannot hope to describe the
slow recombination of the rest of the population as moni-
tored, for example, by a LESR [light (induced) electron
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FIG. 3. Like and unlike pair correlation functions as a func-
tion of separation. Recombination has proceeded to (a)
R=1.25, (b) R=2.5.

spin resonance] experiment.

The SKB-K approximation also produces the like and
unlike pair correlation functions X(r,R) and Y(r,R)
which are shown in Fig. 3. X(r,R) and Y(r,R) must
continue to be unity at large r where the initially random
distribution remains undisturbed. For NAN, Y(r,R) is
of course zero for r < R. The increasing importance of
the clumps of like particles is seen in the increase in
X(r,R) for r <R.

It is the development of clusters of like charges which
slows these reactions and produces an asymptotic power
law for n(R) with slope — % from an initially random
distribution. The Kirkwood approximation used by SKB
makes a start in describing the clusters, but its restriction
to two-particle correlations leads to the faster recombina-
tion rate with logarithmic slope g = —0.53 as R— oo be-
cause of the neglect of higher-order correlations. It
nonetheless provides a much better description of the ap-
proach to the asymptote. To a degree this is fortuitous,
since Fig. 2 shows the true slope of — § is reached early
by SKB-K. At greater R there is a gradual divergence
because of the difference ¢ — 5. Any truncation method,
it seems, will fail asymptotically. Nonetheless, pair
correlations together with the Kirkwood approximation
can account clearly for much of the change of exponent
from —1 in the unstirred reactor to — & in the unstirred
system. It is interesting that in a study of reactions of the
form A+A4— A, ie., particles of one kind only, Lin,
Doering, and ben-Avraham [11] found that the superpo-
sition approximation was successful to the point of yield-
ing the correct asymptotic slope. The crucial difference
between their system and the present one is the develop-
ment of clusters of unlike particles which can only hap-
pen when two species (or more) participate in the reac-
tion.

It is possible that an extension of the SKB-K method
might lead to convergence on to the scaling result, but it
remains to be seen whether this will be easier to achieve
than an extension of Eggert’s cluster calculation. At
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present our best understanding of these unstirred reac-
tions, particularly in D > 1, comes from Monte Carlo cal-
culations. It may be possible to apply SKB-K to D> I,
but a more profitable line of inquiry may be an explora-
tion of the kinetics of initially correlated electron-hole
distributions, resulting, e.g., from excitonic effects.
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