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Suppression of Tunneling by Interference in Half-Integer-Spin Particles
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Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magne-
tization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin,
but is allowed for integer spin. A coherent-state path-integral calculation shows that this topological
eÃect results from interference between tunneling paths.
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The search for new systems which exhibit quantum
phenomena at the mesoscopic scale has led to a great
deal of activity in recent years on nanometer-size mag-
netic particles. In such particles it is possible for the
electronic spins to be locked together into a well-ordered
state, either aligned (ferromagnetic) or antialigned (an-
tiferromagnetic), but whose direction can rotate. For
common forms of magnetic anisotropy the magnetic vec-
tor has two or more low-energy directions. Several re-
cent investigations have focused on the possibility that
the magnetic vector will pass between these directions
by quantum tunneling [1,2]. While the tunneling rates
are predicted theoretically to be exponentially small in
the size of the magnetic particles, recent experiments [3,
4] suggest that quantum tunneling is observable in par-
ticles with several thousand spins, which are available to
present technology.

In this Letter we show that for a wide range of sys-
tems, quantum tunneling is completely suppressed if the
total spin of the magnetic particle is half integral but is
allotued in integral-spin particles [5]. An important ex-
perimental implication of this result is that in ensembles
of magnetic particles in which the exact number of spins
per particle is not precisely controlled (the typical case
with present technology), half of those particles (those
with an odd number of electrons) will not exhibit quan-
turn tunneling. Such parity effects are well known in
atomic physics, but have not been previously noticed for
magnetic particles [6]. We show in several specific exam-
ples below that this suppression has a topological origin
and arises as a destructive interference between different
tunneling paths. Thus we hand that one quantum effect
(tunneling) is suppressed by another (interference), lead-

ing to "classical" behavior in half-integer spin systems.
We begin with a reanalysis of the tunneling behavior

of a small ferromagnetic particle with easy-plane —easy-
axis anisotropy in the superparamagnetic limit where it
behaves like a single large spin —referred to as "model I"
in [7]. The classical anisotropy energy E has the form

E(n) = E(8, P) = K,o cos2 8+K„a2 sin 8sin P, where
n is the magnetization direction and K, & K& ) 0; this
energy corresponds to a quantum spin Hamiltonian,

H = K, |T, + Kyo. ,

where o is the particle's total spin, and Mo ——p, Isa is its
magnetic moment, with p, B the Bohr magneton. We are
interested in the tunneling of the magnetization direc-
tion n between its two equivalent low-energy directions
at the points 8 = m j2, P = 0 and 8 = 7r/2, P = it, corre-
sponding to the coherent-state kets [0) and [7r), respec-
tively. To compute the tunneling rate P [8] we consider
the imaginary time transition amplitude expressed as a
coherent-state path integral for spins [9—12],

DA — E (2)

where P is the temperature, DA Q dP d8 sin 8,
and where the integral runs over all paths (i.e. , mag-
netization directions) connecting one minimum to the
other. The Lagrangian I occurring in the Euclidean ac-
tion 8@ = jo d&I is given by

dr/ = io [P(P) —P(0) + 2n7r] (4)

to S~. Here n is a winding number counting the number
of times which the path wraps around the north pole. As
a total derivative, this term has no effect on the classi-
cal (Bloch) equations of motion, which can be derived by
extremizing just the Lo piece of the action [7]. As a con-

sequence, this boundary term is commonly ignored. %'e

show here, however, that this term is crucial for the quan-

tum properties of the magnetic particle, making the tun-

neling behavior of integral and half-integral spins strik-

ingly different.
This result is most clearly seen by treating the tran-

L = iaP —iagcos8+ E—:ioP+ Lo.

The first two terms of Eq. (3) define the Wess-Zumino
term [10] which is of crucial importance in the following.
For any path on the 2-sphere S2, parametrized by P(r)
and 8(r), this contribution to the action is equal to ia
times the area swept out on S2 between the path and the
north pole; for closed paths this has exactly the form of
the Berry phase [12—14].

The first term of Eq. (3) has some special features
which require discussion. It is a total derivative term,
which, when integrated, gives the boundary contribution
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sition amplitude of Eq. (2) within an instanton approx-
imation (i.e., saddle-point evaluation) [8]. In the easy-
plan" "asy-axis model, the saddle-point paths remain
near 8 = 7r/2 (cf. [15]), so they can be characterized
by their winding in the P variable only. This model has
the important feature that the passage from P = 0 to

P = m' can be accomplished either by an instanton or an
anti-instanton path, i.e. , a clockwise or counterclockwise
winding over the barrier; see Fig. 1(a). Then the prop-
agator of Eq. (2) is approximated by a sum over paths
comprising a sequence of instantons and anti-instantons
winding over the barrier. The expression for low temper-
atures is

m+l odd (D~)~+~
(vr~e ~0) oc e ~ ' ),,

e' ')e o ( +' = e ~ 'sinh[2DPcos(acr)e o].
m, l&0

(5)

(6)

Here D is the fluctuation determinant (without zero
mode) [8], l is the number of instantons, and rn the num-
ber of anti-instantons in the path, Eo is the zero-point
energy in one well, exp( —So ) is the instanton contribu-
tion to the path integral, and the constraint on the sum
reflects the requirement that P(P) = a [mod(2m)]. Note
that the action S is exactly the same for the instanton
and anti-instanton, because this action is unchanged if P
is replaced by —P [15]. From Eq. (5) we can now read off
the tunneling rate P (energy level splitting):

P =4D~cos(pro)~e o, e
~1+v Ap

Here A = K„/K, . Evidently, the tunneling rate vanishes
for half-integral spins because of the cos(pro ) factor which
arises directly from the topological boundary term of Eq.
(4). This factor represents an interference between the
instanton and anti-instanton contributions to tunneling.
If the spin o. is an integer, then the interference is con-
structive, and the total tunneling rate is of order of the
single-instanton rate. But if the spin is half integral, then
cos(vrcr) = 0; there is destructive interference between
the instanton and anti-instanton, and the tunneling rate
is zero. Note that this spin-parity effect is of topologi-
cal origin and thus independent of the magnitude of the
spin.

A graphic illustration of the difference between integer
and half-integer spin systems is afforded by the numer-
ical energy spectra of Hamiltonian (1) presented in Fig.

2. Results for cr = 102, 10 are shown as a function of K„,
for K, = 1. As K& is increased, a barrier between the
two easy-axis directions is developed, and tunneling oc-
curs for the integer-spin case. The tunneling rate, which
is proportional to the energy splitting between the two
lowest energy levels, decreases with increasing K„[see
Eq. (6)], eventually vanishing when Kv ——K„since at
this point the z component of the magnetization com-
mutes with the Hamiltonian and so is conserved. In the
half-integer-spin case, by contrast, it is easy to show from
direct consideration of Hamiltonian (1) that the space of
states decomposes into two independent subspaces with
identical energy spectra. Thus all states are strictly dou-

bly degenerate, and there is no tunneling, consistent with
the arguments above.

The result that tunneling is suppressed for half-integer
spin has much greater generality than is suggested by the
above analysis. The suppression can be derived within
the coherent-state path-integral formalism independent
of any approximation. Any arbitrary path 8(r), P(r) in

Eq. (2) (not just the saddle-point path) can always be
paired with another path, 7r —8(7), —P(r), which has the
same I.o in Eq. (3), while the winding-number term of
Eq. (3) is reversed; thus, the destructive interference for
half-integral spin occurs term by term in Eq. (2). Fur-
thermore, this pairing is possible for much more general
Hamiltonians than Eq. (1). One generalization involves
adding any additional terms to H which preserve the
symmetry of rotation around the x axis (e.g. , o', ov), in-
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FIG. 1. (a) Anisotropy energy vs P at 8 = n/2, showing
the path for the instanton (I), the anti-instanton (AI), and a
more general path P containing one anti-instanton and four
instantons. (b) Antiferromagnetic ring coupled to an excess
spin [Eq. (7)].
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FIG. 2. Low-lying eigenenergies as a function of K„ for
K = 1 for the model of Eq. (1) for spin-10~~ and spin-10. All
levels are doubly degenerate for o' = 102.
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eluding odd-order terms like B,„&o. . Of course, if such
an external-field term is present, then the degeneracy be-
tween the two wells is broken; nevertheless, the vanishing
of the propagator of Eq. (2) for half-integer spin still im-

plies vanishing hybridization between the two (inequiva-
lent) wells, and an absence of tunneling. The other inter-
esting generalization of H involves adding any even-order
term (e.g. , os, o cr&a2), but excluding odd-order terms.
Then H has time-reversal (T) invariance; absence of tun-
neling [i.e. , vanishing of the transition amplitude (5)] can
again be proved by a pairing of paths [this time, the
paths n(r), —n(P —r)]. In this case, the vanishing of
tunnel splitting is directly related to the Kramers degen-
eracy [16]. We can say more generally that for anisotropy
Hamiltonians which have two equivalent energy minima,
the absence of tunneling for half-integral spin follows di-

rectly from the Kramers theorem [17].
We now analyze a problem raised by a recent exper-

iment on tunneling in small antiferromagnetic particles
[8]. The particles were not perfect antiferromagnets, but
carried an excess magnetic moment, presumed to arise
from surface effects, of a few percent of the total number
of spins. In applying to the experiment the theory de-
veloped in Ref. [18] for the tunneling of a Neel-ordered
antiferromagnetic particle through an anisotropy barrier,
it was assumed [3] (as suggested in [18]) that the excess
spins simply follow adiabatically the direction of the Neel
vector without affecting the tunneling dynamics. We
show now that, within a simple extension of the existing
models, this expectation is false: As above, a half-integer
excess spin of any size quenches tunneling; an integer ex-
cess spin also influences the tunneling rate, though more
modestly.

Our model is a 1D antiferromagnetic ring with N spins
rr(~) (spin magnitude o) and periodic boundary condi-
tions; all the spins cr are coupled to a central excess spin

s with coupling constant J, = (—1)~J,. Thus the cen-0)

tral spin wiQ prefer to remain aligned with the Neel vector
of the spins on the ring [see Fig. 1(b)]. The Hamiltonian
of the system may be written

N

) [Jcr(2) .o (2+i) + +(cr(3)) + J(2)o (3) .s] (7)
j=1

Here N is even; odd N would produce a different prob-
lem involving frustration and nonzero total spin on the
ring. H is the anisotropy Hamiltonian (1), and leads to
two degenerate states, the one shown in Fig. 1(b), and
the one where all the spin directions are reversed. The
problem is to compute the tunneling rate between these
two states.

This model may be considerably simplified if we re-
strict our consideration to the continuum and semi-
classical (large o.) limit. For this we use again the
coherent-state path-integral representation, and, apply-
ing standard manipulations [10, 12], we then arrive at a
generalized nonlinear o. model in terms of a Neel unit

vector l, , and a central spin unit vector n, [19]. We take
't to be uniform around the ring, obtaining the following
eEective Euclidean action:

p ; (gi'+ (ti'»n'g&)+ N+(gl $i)( 8pB

+crN J,l n, + is/, (1 —cos 0, ) ~,

where l and n are expressed in polar coordinates, and the
transverse susceptibility y~ is related to the parameters
of Eq. (7) by y~ = Np~&/J.

As before, we find that if the excess spin s of the an-

tiferromagnet is half integer, then the tunneling rate is
exactly zero. The proof follows in the same way: we con-
sider an arbitrary path (8~(r), P& (r), 8, (r), P, (r)) and its
partner with ei, ~ vr —e~ „Pi, ~ —P~, . Then in the
path-integral expression analogous to Eq. (2), and with
l and n, having the same boundary conditions, these
two paths have opposite winding-number contributions
kis7r(1+ 2n) [cf. Eq. (3)], and the same values of Ia.
Thus, a factor cos(xs) appears exactly as in Eq. (5), im-

plying complete destructive interference and a vanishing
of the tunneling rate if the central spin s is half integral.

Also as in the ferromagnetic case, this vanishing can be
seen to be related to the Kramers degeneracy. Again, the
model Eq. (7), and therefore Eq. (8), has time-reversal
invariance (since all terms contain an even number of
spin operators). Thus, the ground state is a Kramers
doublet so long as the total spin of the model is half
integral, which, since 1V is even, requires that s is half
integral. Again, suppression of tunneling is related to
the absence of a tunnel splitting in the ground state.
However, we caution as we did above that there is not a
one-to-one correspondence between the Kramers theorem
and absence of tunneling for antiferromagnetic models.

Finally, we consider the question of how strongly a
nonzero but integer s modifies the tunneling dynamics of
Eq. (8). For s = 0 this model can be solved in the instan-
ton approximation; the saddle-point solution happens to
be identical to a different (uniaxial-anisotropy) model
considered in [18]. The saddle-point path has e~ = 7r/2

everywhere, while P~ passes from 0 to vr. As in [18], the

tunneling rate is given by P ue v x~""~"~,with a =
p~(8k„/y~) &, and with the notation k&, = o2NK„, for
the anisotropy constants of the whole ring.

A full solution of Eq. (8) for s g 0 seems difficult. We
can make progress in the adiabatic approximation [13,
14], in which the spin n, simply follows the instantaneous

~A

direction of the Neel vector l at every point along the
path. In Eq. (8), this simply involves removing the l . n,
term (since it is just a constant) and setting 8, = 0~,

((" = 4 [2o].
We can now And an approximate solution for the tun-

neling rate if we assume that ky &( kz and that therefore
8~ does not fluctuate very far away from 7r/2. If we write
8~ = 7r/2+ 6 and expand the Lagrangian to second order
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in 8, we obtain

+k„sin P+ is/(I + 8). (9)

We find [21] that for k„« k, we have 8
8li2 k, /g~. Keeping then only the leading terms in L
we find for the extremal 8 path, 6 = —is//2k„ob-
taining an effective Lagrangian for the P variable, I =
(gg/8ls&+ s /4k, )gP + kv sin /+is/. This Lagrangian
is now identical to the one for a pure antiferromagnet
(see [18]) with s = 0, but with a topological boundary
term and a modified value of the transverse suscepti-
bility (the "moment of inertia of the rigid rotor" [11]):

——yz + 2s is&/k, . Thus the tunneling rate is finally
given by

P
I
cos(mrs) I~e (10)

Again, for half-integral excess spin s tunneling is sup-
pressed. For integral s we can define a crossover excess
spin s, for which the contribution of the excess spin to
the moment of inertia becomes comparable to that of
the antiferromagnetic ring: s, = gg~k, /2/is~. If, e.g. ,

k, 10k„, then s, is approximately 1.6 times the WKB
exponent of Eq. (10) for s = 0. As Ref. [18] has pointed
out, for practical reasons this WKB exponent cannot be
much larger than about 25 if tunneling is to be observed
in a small particle. Thus, the magnitude of the excess
spin is quite restricted (s & 1.6 x 25) if pure antiferro-
magnetic dynamics is to be observed.

In summary, we have demonstrated that tunneling in a
wide class of magnetic particles is strongly parity depen-
dent, being completely suppressed for half-integral spins.
Preliminary results indicate that similar effects are to be
expected in the tunneling of domain walls [2]. We expect
that these phenomena can still exist in the presence of
moderate dissipation [11].
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