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We derive a set of nonlinear partial differential equations describing the space-time evolution
of Langmuir waves in a beam-plasma system, taking into account the propagation effects due to
the difference between the beam and wave velocities. We demonstrate the existence of superradiant
spikes behind the electron beam front that can be represented by a self-similar solution of the system
of equations. These spikes are associated with self-bunching in the electron beam. The conditions
in which the predicted spiking behavior could be experimentally observed are discussed.

PACS numbers: 52.35.Qz

The beam-plasma instability is certainly one of the
most familiar instabilities in plasma physics. Substantial
progresses in the understanding of the saturation pro-
cess and basic nonlinear effects in the evolution of this
instability were initiated with the single-wave hypothesis
proposed by Drummond et al. in 1970 [1]. According
to this hypothesis, the most unstable wave grows ex-
ponentially from the background plasma noise, until a
large amplitude signal, characterized by a very narrow
frequency bandwidth, is created so that the electrons
of the beam interact with a very nearly pure sinusoidal
wave. The model treated the background plasma as a
linear dielectric and predicted that the saturation in the
growth of the wave amplitude was due to the trapping
of the electrons of the beam in the potential wells of the
wave. In subsequent works, O’Neil, Winfrey, and Malm-
berg [2, 3] were able to write a set of nonlinear equations
describing the interaction between a plasma and a small
cold beam in a stationary situation. It is of interest to
note that the single-wave model equations, as they ap-
pear in Ref. [2], are formally identical with those describ-
ing a free-electron laser in the Compton regime and in a
steady-state situation [4], i.e., when one can neglect all
“slippage effects” due to the fact that the beam and the
radiation are propagating with different velocities. The
generalization of the equations written in Ref. [2] to the
case of relativistic electron beams was taken up by Mat-
siborko et al. [5] and Lampe and Sprangle [6]. When the
beam strength exceeds a definite threshold [7], the strong
Langmuir wave is able to interact nonlinearly also with
the electrons of the background plasma, producing cav-
ities in the electron density and giving rise to localized
spikes in the electric field of the wave [8].

In this paper we wish to extend the equations written
for a small cold beam in Refs. [2] and [6] to the case in
which the slippage between the electron beam and the
Langmuir signal is taken into account. We are able to
demonstrate the existence of a new kind of superradiant
self-similar spike of the electric field amplitude developing
in that region of the electron pulse that we shall call the
“slippage region.” The emission mechanism prevailing
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in this region, which is immediately behind the electron
pulse front as it propagates through the plasma, is dif-
ferent from that prevailing in the main body of the pulse
(steady-state region) as it has been described in Refs. [2,
3]. In the slippage region, the Langmuir field has a de-
pendence on both space and time and it develops into a
superradiant spike [9] that continues to grow and narrow
as it propagates along the beam, until the plasma dy-
namics comes into play and the Langmuir wave collapses
[7]. The superradiant spike is not trapping the electrons
of the beam and is, therefore, able to extract energy from
them with the maximum of efficiency.

We treat the plasma ions as a stationary neutralizing
background and the electrons of the plasma as a nearly
cold linear dielectric and restrict our analysis to a one-
dimensional (z,t) situation. If the current densities of the
plasma and of the electron beam are Jp(z2,t) and Jp(z,t),
respectively, the electric field E(z,t) of the wave excited
in the beam-plasma system obeys the equation

OE(z,t)
ot
whereas the plasma current density Jp(z,t) is governed
by the equation

82J, , 02J, W2OE
a2 T2~ 4r ot @)
where v = 4/T/m is the plasma thermal velocity,

wp = \/4meZnyg/m is the plasma frequency, and nyo is
the unperturbed plasma electron density.

It is convenient to write the field and the current den-
sities as

= —4n[Jp(z,t) + Jb(2,1)], (1)

E(z2,t) = Eo(z,t)e!**=+Y 4 c.c., (3a)
Jp(2,t) = Jpo(z,t)e*2=9t) 4 cc., (3b)
Jp(2,t) = Jeo(2,t)e!F*98 4 cc., (3c)
where w = /w2 + 3v2.k2. We assume the complex ampli-

tudes Ey, Jpo, and Jyo to vary slowly in space and time,
i.e., |0FEy/0t| « w|Eg| and |0Ey/9z| < k|Ey|, and simi-
lar expressions for the current density amplitudes [slowly
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varying envelope approximation (SVEA)]. This hypothe-
sis is consistent with the assumptions, in the single-wave
model of Refs. (2, 3], of small, fast, and nearly cold elec-
tron beam, vp /v, < (m,(]/rl,p())l/3 < v, where nyg is
the beam density and v, = (1 — v?/c?)~/2 is the energy
in mc? units of the electrons of the beam with velocity
vp. The excited large amplitude signal has a very narrow
bandwidth around the wave number w/v.
By substituting (3) into Eqgs. (1) and (2) we obtain

OFE
B—to —iwEy = —4m(Jpo + Jro), 4)
9?2 5 02 ) 0 0
<8t2 302 T@ 2) Jpo — 2iw (Bt +vga )Jpo
= —wlJo, (5)

where vy = 3v4k/w is the group velocity of the Langmuir
wave in the plasma. Making use of the SVEA approxi-
mation and assuming kvr/wp < 1, we obtain

1o} 0
(8t +Uga ) Ey= —27r(wp/w)2Jb0

= 27 (wp/w)? <Jb(z, t)e_i(kz‘“’t)> ,

(6)
where on the right-hand side of Eq. (6) we used Eq. (3¢)
and averaged over a wavelength A = 2x/k. Since Ej is
slowly varying on the scale of a wavelength, it can only
be driven by a beam current averaged over a distance [
several wavelengths long. We now assume that the beam
consists of N charge sheets with positions z;(t), where

j=1,2,...,N, and write Eq. (6) in the following form:
G 8 270 N i,
(é—t + vga) Ey = 2me(wp/w) WZvje ¥, )

j=1
where v; = dz;/dt is the velocity of the jth sheet and
0; = kz;(t) — wt = k[2;(t) — v,t], where v, = w/k is the
resonant velocity. The dynamics of the electrons in the
jth sheet can be approximately described by the equa-
tions

(§t+ub )e = k(v; — ), ®8)

8+ 6] _ €
ot " 8z )Y T e

J

[Eoe® +c.c]. (9)

In deriving these last two equations we supposed the elec-
tron distribution to vary slowly in space on the scale of a
wavelength, and the envelope of the electron current to
travel at the constant velocity vp.

The preceding basic equations (7), (8), and (9) can be
conveniently written in the following final form:

00;

5z P o
Op; 65

a2 = —[1-25p;(1+ pp; /22 (A + ), (11)
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(5 + E) > (1+ppj)e™™, (12)
j=1

where p; = (v; = v.)/pvr, A = Eo//ZrmuZriosy00y,

Z = kp(vr/w)z, and 7 = wp(t — z/vp)/(Bg — 1), with

By = wp/vg. Equations (10)-(12) depend only on two

parameters, p = (1/7v,) (ﬁboﬁg/2np0)1/3 (wp/w)4/3 and

= pB?y2, where B, = v./c and v, = (1 — §2)"%/2
Note that we introduced in Eq. (12) a longitudinal elec-
tron beam profile, nyo(7) = Tipox(7), where Tipo is the
peak value of the beam density and x(7) is normalized
to 1.

Equations (10)-(12) extend the previous steady-state
model equations of Refs. [2, 3] and their relativistic gen-
eralization [5, 6] to the case in which the slippage be-
tween the electron beam and the wave is taken into ac-
count. The two preceding models assumed the plasma
and the electron beam to be only one wavelength long
with periodic boundary conditions at each end. This
can be appropriate only for an infinitely long electron
pulse and/or a continuous excitation at the border of the
plasma. The periodic boundary condition assumptions
are not appropriate when one wishes to examine how the
front of the electron pulse propagates into the plasma, or
when the source of the perturbation, which is amplified
by the beam-plasma instability, has a pulsed character.
In these situations, no steady-state evolution is possible
behind the electron beam front or of the excitation pulse.

In order to simplify the analysis of Egs. (10)-(12), we
consider only the limit case in which p|p;| < 1 (i.e., |v; —
vr| € vy) and S|p;| < 1 (ie., |75 — ¥ < 7). In these
limits the system reduces to

06

E = Pj, (13)
%p_j = — (A% +c.c.), (14)
(3 + 5 ) A=xmbz), (15)

where b(Z,7) = (exp(—i6)) = (1/N) ZJ Lexp(—ib;) is
the bunching parameter, describing the spatial modu-
lation of the beam. Equations (13)-(15) are formally
identical to those describing a free-electron laser in the
Compton regime [4]. The space and time variables are
scaled with respect to the gain length L, = (A/27p)vy /v,
and the cooperation time T, = (8, — 1)Lg/vs, so that
Z=2z/Lyand 7 = (t — z/wvp) /Te.

Before proceeding to investigate the nonlinear evolu-
tion of (13)-(15), we summarize the main results [10, 11]
of a linear analysis around the equilibrium state, with no
field and cold, monoenergetic, and unmodulated beam
distribution. We will assume henceforth a step pro-
file for the electron beam [x(7) = 1 for 0 < 7 < 7p,
where 7, is the duration of the electron pulse, and
zero elsewhere] and an external excitation at z = 0,
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A(0,7) = Agexp(—iéT), of constant amplitude, where
6 = (p)o = (vb — vr)/pv, is the detuning parameter. It is
possible to demonstrate [10] the existence of two regions
in the electron pulse. In the slippage region (0 < 7 < z)
behind the beam front and for a time interval equal to
the delay due to the slippage between the electrons and
the wave, the wave amplitude has both a space and time
dependence. In the steady-state region (Z < T < 7p) the
wave intensity has only a space dependence, growing as
exp(2lImk|Z), where k is the root of the cubic equation
k?(k—8)+1 = 0, which is unstable for § < 67 = (27/4)/3
with maximum growth rate at § = 0. In the slippage re-
gion a growing wave packet appears as the beam moves
along the plasma. A detailed study [11,12] shows that in
the linear regime the peak of such a wave packet moves
at the constant velocity Vg = 3uy/(1 + 208,), while its
width is increasing in proportion of the square root of
Z and the peak of its intensity is growing exponentially
as a function of Z, with the maximum rate. The length
of the slippage region, for vy > vr, is practically equal
to the plasma length, so that, for electron pulses shorter
than the plasma column, the slippage region covers the
whole beam.

As described in Refs. [2,3] and experimentally observed
(13, 14], the amplitude of the wave in the steady-state
region grows exponentially in the linear regime, until,
after some distance from the point where the beam en-
ters the plasma, the wave amplitude stops growing and
begins to oscillate around a mean value. On the con-
trary, in the slippage region, the wave packet starts to
narrow in the nonlinear regime and evolves into a super-
radiant, self-similar spike. In both cases the interaction
produces self-bunching in the electron beam distribution,
with | b |~ 0.8 at the peak. In Fig. 1 we show the wave
amplitude as a function of 7 at Z = 30, as it results
from the numerical integration of Egs. (13)-(15), with
Ay =107%, (a) 6§ =0, and (b) § = 4, and for an electron
beam of duration 7, = 50. In the steady-state region
Z < T < Tp, the wave amplitude is constant, whereas
in the slippage region 0 < 7 < Z we observe the grow-
ing of a large spike. In the region of free propagation
behind the trailing edge of the beam, 7, < 7 < 7, + Z,
and in the resonant case [Fig. 1(a)], we can see the track
of the spatial evolution between Z = 0 and Z = 30. In
the detuned case [Fig. 1(b)] no appreciable growth of
the wave amplitude occurs in the steady-state region, as
the perturbation is stable for § > ép, whereas in the
slippage region the wave packet has evolved into a large
spike. A numerical study shows that the spike continues
to grow and narrow as it propagates along the plasma,
slipping behind the beam front. Observing the evolu-
tion of the spike along the plasma in a coordinate frame
moving at the velocity vy of the beam (i.e., at T con-
stant) and comparing the spike at different values of 7
(i.e., for different distances from beam front), we find
that the peak amplitude and the width of the spike are,
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FIG.1. Normalized wave amplitude |A| vs 7, from numer-
ical integration of Egs. (13)-(15), for a fixed position along
the plasma, Z = 30, Ao = 10~%, and an electron pulse of

duration 7, = 50; (a) resonant case § = 0; (b) detuned case
6=4.

respectively, proportional to 7 and 7=1/2. Such a spike is
described [11] by the following exact self-similar solution
of the partial differential equations (13)-(15), in the case
of constant beam profile [x(7) = 1]: A(Z,7) = T7A41(y)
and 6;(z,7) = 61,(y), where y = /7(Z—7). Once substi-
tuted into Egs. (13)—(15), this particular solution reduces
the partial differential equations to a system of ordinary
differential equations for the variables 6;; and A;j:

d20 ] i .

———dy;J = — (41" +c.c), (16)
dA »

(y/Q)gy—l = (e7) - A1 (17)

These equations give a good description of the Langmuir
wave packet even when the beam profile x(7) is not con-
stant but slowly varying with respect to the width of the
spike, at least in the asymptotic limit in which the self-
similar solution strictly applies. Equations (16) and (17)
do not contain explicitly the variable 7: It follows, there-
fore, that the peak amplitude of the wave is proportional
to 7 and, from the universal scaling, |Eg|? o n?, ie.,
that the field in the pulse is superradiant. The width of
the pulse is inversely proportional to /7, i.e., inversely
proportional to the square root of the peak amplitude.
The nonstationary emission in the slippage region be-
hind the beam front or, more generally, a pulsed per-
turbation, generates in the linear stage of the evolution
a wave packet that evolves in the nonlinear regime to-
ward the superradiant self-similar solution. Whereas a
constant perturbation in a continuous beam gives rise to
a stationary emission that stops when the electrons be-
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FIG. 2. Normalized average beam velocity (p) vs Z, at
T = 30, for A = 107*, § = 0 (dashed line), and § = 4
(continuous line).

come trapped by the large wave, the superradiant spikes
generated in the slippage region of the beam continue
to grow without trapping the electrons and extracting
energy from them. That the trapping process is not rel-
evant for the superradiant emission can be shown in Fig.
2, where the scaled average beam velocity (p) is plot-
ted as a function of the position Z along the plasma, at
T = 30 for the cases of Figs. 1(a) and 1(b). In the res-
onant case (dashed line), the electrons at the selected
position 7 in the beam perform synchrotron oscillations
due to the trapping by the steady-state wave, until (for
T > Z) they interact with the large superradiant spike
propagating from the leading edge and lose a consider-
able fraction of their energy. After the interaction with
the spike, the electrons are left completely untrapped and
with a large amount of energy spread. The detuned case
(continuous line) shows that the same process also takes
place if the electrons are untrapped before the arrival
of the spike. Hence, the slippage inhibits the trapping
of the beam electrons, which is responsible for both the
saturation mechanism and the development of the side-
band instability. The optimum extraction of energy oc-
curs when the electrons undergo half an oscillation in the
potential well of the superradiant wave. As the oscilla-
tion frequency is proportional to the square root of the
wave amplitude, the distance in which the electrons un-
dergo half an oscillation decreases as the wave intensity
becomes higher. As a consequence, the width of the spike
decreases in proportion to the square root of its peak am-
plitude. The condition that the electrons undergo half an
oscillation in the potential can be maintained at an arbi-
trarily large peak intensity, provided that the wave pulse
is sufficiently short. This is because the electrons do not
remain in the pulse, but slip forward through it.

The superradiant spiking behavior is observable when
the strength of the Langmuir wave is below the thresh-
old of collapse (7] [|Eo|?/8mnyT > (kAp)?, or, using
the scaled variables, B,(€./T)p*|A|? > 10, where Ap
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is the Debye length and & = muv}?/2 is the beam en-
ergy in e€V]. The predicted superradiant spikes and their
temporal and spatial evolution could be experimentally
observed by performing, for instance, an experiment of
the same type as described in Refs. [13, 14]. In this case,
the plasma has a density ny ~ 10! cm™3 and a tem-
perature 7' ~ 10 eV. An electron beam is injected, with
Tiso/npo ~ 1072 and with vy, /vy ~ 5. With the preceding
values, one has p ~ 0.14, Ly ~ 0.7 cm, and T, ~ 8 ns
and By(E./T)p*|A|? ~ 0.04. In this range of parameters,
as seen by Gentle and co-workers [13, 14] in stationary
conditions, there are no other processes, like paramet-
ric decays or weak turbulence phenomena [15], that may
compete with the development of superradiant spikes.
In conclusion, we have shown that, in the evolution
of the beam-plasma instability, space-time effects due to
the different velocity of propagation of the beam and the
wave give rise to a superradiant emission of self-similar
spikes. This is the only dynamical regime possible when
the electron pulses are shorter than the plasma length.

(@) Also at Istituto Nazionale di Fisica Nucleare, Sezione di
Milano, via Celoria 16, 20133, Milano, Italy.
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