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Inverse Cascade and Wave Condensate in Mesoscale Atmospheric Turbulence
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It is shown that an inverse cascade of the turbulence of inertio-gravity waves produces a long-scale
wave condensate. A new nonlinear equation is derived for long waves on rotating shallow water. It is

proven that steady localized solutions are absent and that the condensate (a uniform inertial oscillation)
is stable with respect to small perturbations. Wave self-interaction thus could not stop an inverse cascade
of mesoscale geophysical turbulence. The implication of the existence of a condensate for the problem of
tidal dissipation and retardation of the Earth s rotation is discussed.

PACS numbers: 43.25.+y, 47.25.Cg, 92.60.Dj

Studying long nonlinear waves on rotating shallow wa-

ter seems to be of great importance for the physics of the
atmosphere and the ocean. Mesoscale atmospheric and
oceanic motions (with the scales larger than the medium
depth Hp and smaller than the planetary scale) could be
described by the well-known shallow water equations in a
rotating reference frame [1,2]. They are written in plane
geometry for the horizontal velocity components v=(u,
v) and for the depth of the medium h:

Du BIt Dh= —g +fv, = —h(V v),
Dt Bx

'
Dt

Dv Bh D B= —g fu, —= +(v V).
Dt By Dt Bt

The system (1) could also be thought of as describing a
two-dimensional compressible gas, with h being the densi-

ty.
The presence of the free boundary gives rise to the ex-

istence of waves (in addition to vortices). The system
(1), after linearization, describes so-called inertio-gravity
waves with the frequency spectrum

to =f +c jc (2)

Short waves (with wavelengths much shorter than the
Rossby radius p=c/f) are the usual gravity waves on

shallow water with the speed c=(gHp)'I . The Coriolis
parameter f is the projection of the planetary vorticity
20 (with 0 being the rotation frequency) on the local
vertical: f=20 sin(t; p is the local latitude.

These waves play an important role in a mesoscale cir-
culation of the atmosphere [3] and of the ocean [21 (long
tidal waves and storm surges). The atmospheric observa-
tional data (see [3,4] and references therein) for horizon-
tal wind velocities show a remarkable universality of tur-
bulence spectra at mesoscales (from tens to thousands of
kilometers). A small-scale part (up to hundreds of ki-

lometers) due to Kraichnan's inverse energy cascade [5]
of two-dimensional vortex turbulence turns at larger
scales into a steeper spectrum having a peak at co=f, i.e.,
at the lowest frequency of the inertio-gravity waves. A
sharp peak of the energy density at co=f has also been
observed for tidal waves in the oceans [6]. This part of
the energy spectrum in geophysical turbulent flows is evi-
dently caused by waves, and its explanation (i.e., develop-

ing the consistent theory of the turbulence of inertio-

gravity waves) is the subject of the present paper.
A natural way to study turbulence starts from finding

conservation laws. Already the form of the dispersion re-

lation (2) suggests that there should be a second motion

integral besides the energy. The point is that three-wave
interactions are forbidden: co(k~)+co(k2)Aco(k~+k2) for

any k~, k2. It means that a weakly nonlinear wave dynam-
ics is defined by four-wave scattering that does not

change the total number of waves. To obtain this invari-

ant, one should introduce canonical Hamiltonian vari-

ables that describe the waves. To be restricted by the dy-

namics of inertio-gravity waves, we take the potential
vorticity (curlv+f)/It to be a constant f/hp in space.
This property is preserved with time since the potential
vorticity is a Lagrangian invariant of the system (1). Un-

der such a condition, one could describe the waves by in-

troducing one pair of canonical variables (h, 4) [7]. The
velocity is expressed as follows:

u = —- ~-'(h -hp),Be fB
Bx Ilp By

+ f B ~ '(h h, ). -—
By Itp Bx

Here h,
' is the inverse of the Laplacian operator. In

these variables, Eqs. (I) turn into the simple Hamiltonian
system Bh/Bt =bH/b4, B@/Bt = —bH/bh, with the en-

ergy H= z fIt(v +u +gh)dr being a Hamiltonian.
Making then the Fourier transform and introducing the
normal wave amplitudes bk by the formulas

ht, =(Ic'Hp/2tot, )' '(bt, +b" k), -
4k = —i(cop/2Hpk ) ' (ba —b* k), —

one can check that wave action f ~bt, ~
dk is an adiabatic

invariant of the system (1). For a homogeneous turbu-
lence, we introduce the pair correlation function nt, b(k
—k') =(bt, bt,*). The total number of waves fn(k, t)dk
(the density of the wave action per unit volume) is a
motion integral.

Having two motion integrals, the energy and the total
number of waves, we could readily establish the direc-
tions of their fluxes by analogy with Fjortoft s theorem in

2D hydrodynamics (see, e.g. , [1]). As it is usual under
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f'our-wave scattering, the energy goes downscale while the wave action cascades upscale by an inverse cascade. It has
been shown [7] that a cascade energy transfer is impossible due to nonlocality so that the wave energy could reach small

scales only due to a nonlocal transfer, which might correspond to the creation of fronts [8].
Here the inverse cascade is discussed. Steady turbulence spectra could be found analytically in the scale-invariant

limits with either kp((1 or kp)&1 when these spectra are power functions of the wave number. Usually to get spectra
(up to a dimensionless factor) it is enough to use dimensional analysis of the dift'erent terms in the Hamiltonian [9].
However, some remarkable cancellations take place in the case in question so we calculate the Hamiltonian explicitly to
get

krbkr dk+ 2 V)2i(bib2 b3 +c.c.)B(k) —k2 —k3)dk)dk2dk3

+ 3 U/ 23(b ~b2b3+c. c.)8(k~ +k2+ k3)dk~ dk2dk3 .

Here m~ is defined by (2) while the interaction coefficients are as follows:

k ~ [cos82i(coqco3 f )+—if sin023(C0$ N3)] +(1 2)+ (1 3)
U/$3=U(k), kp, k3) =

32HON ] copcop

V~23=V(k~, k2, kq) =[k~[cos023(r02coi f ) +—if si n8q i(coq
—coy)]+kq[cos0~3(ro~ros+f )+ifsi n8~ (sm~+co )3]

+ki[cos82](ro2co~ f )+if sin&2](N +2r]ii)]j/(80plt)~r02Ni)
—--+ "+

Here 0;~ is the angle between the wave vectors k; and k~.
Since three-wave processes are forbidden, one should make a quasilinear transformation bl, aI, which eliminates

nonresonant cubic terms from H and gives finally the interaction Hamiltonian fT]$340[opll3a46(k/+kg k3 k4)
xdk~ dk4 that describes four-wave scattering [9]. Here

V 1*+212 V3+434
T1234 N]+ N2 N1+2

U V* — V1+212 3+434 l31 —3 424 —2 + (1,3 2,4)+ (1,2 3,4
N1+2+ N1+ N2 N4 —2+ N2 N4

with Vi+2~2=V(k~+k2, k~, kq), etc. According to a gen-
eral theory of wave turbulence [9], a steady spectrum
carrying the action flux Q is as follows: nl, ee Q

' 3

x k +' . Here I and a are the scaling indices of
T and N, respectively.

At the small-scale limit, NI, ck and the terms of or-
der ck cancel each other in the denominators of T, so
m =4, a= l. The spectrum nk ee Q'~ k ' ~ thus found

has been shown to be an exact solution for the respective
kinetic equation, and it satisfactorily fits the data of at-
mospheric observations [7].

At the opposite limit (kp«1), one has m =2, a=2
and the spectrum is nl, ~ Q

'~ k . Note that this type
of spectrum can be observed in k space rather than in the
frequency domain where it occupies a small interval
co f«f. The da—ta accessible [2-4,6] are mostly from

frequency spectra, and they do not allow a direct compar-
ison with the spectrum obtained. Nevertheless, the data
of [10] show the spectrum to become less steep as co f
in agreement with our result.

One could directly check that both spectra carry a con-
stant flux of the waves towards large scales and naturally
match each other at k =p '. The inverse cascade of the
wave turbulence thus proceeds until rather large scales,
and this cascade gives an accumulation of the waves near
the bottom of the frequency spectrum. To describe the
destiny of the cascade, substantially nonlinear waves with

the frequencies co =f have to be considered (see below).
Note that the same problem of a large-scale sink for an

r

inverse cascade led to the derivation of the Zakharov
equation for plasma waves [11] as well as an application
of the nonlinear Schrodinger equation (NSE) for optical
turbulence [12]. In both cases, an extra motion integral
(number of waves) exists causing an inverse cascade and

the creation of a condensate that is a uniform wave field.
Here the main question is the stability of the condensate.
Wave systems are thus divided into two classes. The first

one corresponds to an instability of the condensate and of
the long waves. It happens if the sign of the nonlinear

frequency shift is either negative (transverse instability)
or opposite to that of the wave dispersion (longitudinal
instability). Examples are given by Benjamin-Feir insta-

bility for water waves and modulational instability in

plasma and optics. This takes place for the Zakharov
equations and for the NSE with attraction between the
waves. The instability destroys the condensate and pro-
vides the sink for an inverse cascade. For example, in

plasma and in optics, a wave collapse (or self-focusing) is

the result of that instability. Very-small-scale motions
are created because of the collapse events and energy
directly goes from large scales into a small-scale dissipa-
tive region [11,12]. The second class contains wave sys-

tems with a stable condensate as is the case for the NSE
with repulsion. As a result of an inverse cascade, the con-
densate grows as well as the amplitudes of long waves.
This causes the so-called Bogolyubov's renormalization of
wave frequencies in the presence of a strong condensate
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h) = i q), p) —=iq),
Bx By

h2 =0, p2 =iq2, q2 = i qi . —
y,

Substituting that into the equations for Bp~/Bt and
iaq~/Bt and summing them up, after cumbersome calcu-
lations we obtain an elegant and compact equation for
e'=(q)+ip()/2:

+~~+2iJ(~, I~l') =0,

Bx

(4)
B~ Ba B~ Ba
ax ay ay ax

Equation (4) is a kind of amplitude equation like the
NSE and the Ginzburg-Landau equation. It is valid for
scales much larger than the Rossby radius. For such
scales, the dispersion of inertio-gravity waves is weak, of
order (kp) . On the other hand, the scales are much
smaller than the radius of the planet since we assume the
Coriolis parameter f to be independent of coordinates.

(see [13]). The wave spectrum acquires a linear term

(rok ~k as k 0) which permits three-wave processes to
be allowed and completely changes the picture of the
large-scale turbulence [12].

Neither of those possibilities takes place in our case.
To show that, let us obtain a nonlinear equation for the
slow envelope of the wave with a carrier frequency f.
First, we pass to the dimensionless variables h/Ho, v/c

and ft, r/p. Then we introduce momentum p=hv
=(p,q) instead of velocity, so our system (1) is written

as follows:

Bp-+B p +B pq +hah 0
Br Bx h By h Bx

r

Bq+ + B q + B pq +h 0 (3)
Br ay h ax h ay

=

h

Br
+divp=0.

Let us look for the solution of the system (3) in the form

h =1+ g (h„e '"'+c.c.),
n 0

p = g (p„e '"'+c.c.),
n 0

q = g (q„e '"'+c.c.) .
n 0

We assume the amplitudes of the first harmonics h ~,p~, q~
to be much larger than h„,p„,q„, respectively, for n&1.
We also assume all spatial scales to be much larger than
unity. Our aim is to obtain a nonlinear equation for the
amplitude of the first harmonic taking into account that
nonzero amplitudes of other harmonics arise because of
nonlinear interaction. Separating in (3) terms with
different time exponents, we have in the main order

Blq I' Blp I'
Ap=O, pp=, gp=

By
'

Bx

Nonlinearity was not assumed to be small while deriving

(4) so that IVI can be larger than unity (which means
that the Mach number is arbitrary). The smallness

Ih —
1

I «I has been assumed which is compatible with
+=1 due to a small dispersion. Equation (4) thus de-
scribes long nonlinear inertio-gravity waves in the atmos-

phere and tidal waves in the oceans (the same system
could be also derived for cyclotron waves propagating
perpendicularly to a strong magnetic field in a plasma).

As one can see, the Laplacian in (4) describes linear
wave dispersion while the nonlinear term has the form of
a Jacobian as is usual for two-dimensional incompressible
flows. Indeed, for k 0 the height (or density) variation
h is proportional to k, and it is small compared to the
variations in the velocity field.

Let us stress that Eq. (4) seems to be quite nontrivial

for nonlinear wave dynamics due to the form of the non-

linearity typical for the waveless situation. Such a form
causes strong consequences which can be readily estab-
lished. The condensate (that is, the solution @=const,
v =cosft, u =sinft, describing an inertial oscillation, like
that of a Foucault pendulum, with a uniform fluid rota-
tion opposite to that of the Earth) is linearly stable since
it does not contribute to the nonlinear term; the perturba-
tion spectrum is col, a:k . The same is true for plane and

spherical waves [the latter is %'(r, t) =e '"'Zo(r420, ),
with Jo being the zeroth Bessel function). The presence
of the condensate does not change the frequencies of
waves in the first order of perturbation theory. The point
is that the nonlinearity could not change the frequency of
uniform motion that is caused by an inertial Coriolis
force acting on the moving particles. The presence of
waves even of a large amplitude could hardly change the
local rotation frequency (of the Earth, for instance). A
nonlinear frequency shift could be thus in the dispersive
part only. That shift is caused by the renormalization of
the sound velocity c =Jgh due to the variation of h. The
latter is small, so a nonlinear frequency shift could arise
in the next order in small dispersion [terms ee (kp) ]. (It
means, in particular, that even taking account of the next
orders of the perturbation expansion does not change the
spectrum of long perturbations coI, ~k, unlike the case
of Bogolyubov's renormalization).

Moreover, the following exact relation for the mean
square radius of the distribution could be derived from
(4):
B2R ~

Br2 Br2~
r IVI dxdy=2 IVVI dxdy) 0. (5)

Therefore, steady solutions with finite R (regular and lo-

calized ones) are impossible in the framework of (4). Re-
lation (5) demonstrates that any localized distribution
spreads over the whole space so that the mean radius
monotonically increases.

Steady vortex solutions of the Ginzburg-Pitaevsky type
[12] with constant asymptotics at infinity (or something
similar to dark solitons in the NSE with repulsion) are
also absent in our case. Looking for a solution of the
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form +(r, O) =A(r)e' +'~ ', one could prove that
lnr as r

The stability of the condensate and the absence of a

frequency renormalization and of localized solutions

mean that the self-interaction of long waves could not

provide a feedback for the inverse cascade. The cascade
should go up until the interaction with planetary Rossby
waves becomes essential. Rossby waves have frequencies
that are much less than f so this interaction could be con-
sidered in adiabatic approximation. It means that the in-

teraction with low-frequency waves could not violate the
conservation of the number of high-frequency ~aves
(which is an adiabatic invariant) and thus could not stop
the inverse cascade. As a first approxitnation, we consid-
er the influence of stationary geostrophic perturbations
(of Rossby type) on the spreading of the packet of
inertio-gravity waves.

Here we assume the presence of a small, slow perturba-
tion of the height ho =1+g, g ((1 which is in geostrophic
balance [1-3] with the currents: 2po= —Bho/By, 2qo
=Bho/Bx. Substituting it into the equation for e and

neglecting other terms we get

2i +2i J(l + ri, +)+ (1+q)M' —O'At) =0.. B'It

Bt
The absence of a bound state of +(x, t) in any one-

dimensional well tl(x) could be established by direct
analogy with perturbation theory in quantum mechanics
[14]. Looking for the solution @(x,t) =e ' 'tlt(x) and

regarding energy E as a perturbation, one could reduce
this problem to that of the linear Schrodinger equation
with the potential U(x) =t) „/(1+tl). Assuming a local-
ized well (ri, ri„, r1,„0as x + ~) we see the poten-

tial to be positive
f+ OO n oo

Udx = dx &0.J —co J —oa (I+ )2q

It means the absence of bound states at least in one di-

mension. The presence of geostrophic modulations does
not thus prevent the spreading of inertio-gravity wave

packets.
Note that the fact obtained that the energy of meso-

scale waves goes into the energy of stable almost uniform

anticyclonic rotation may help to solve an old problem of
the calculation of the observed retardation of the Earth' s

rotation. Tidal dissipation should be the main cause for
this retardation [3]. The problem is that the paleontolog-
ical data on the increase of the length of the day [15] as
well as the study of satellite orbits [16] give a value of the
dissipation rate about 5 times larger than the friction dis-

sipation in shallow water. According to Broshe and Sun-
dermann [17], the correct way is to calculate torques ex-
erted by tidal currents rather than a scalar dissipation.
The directions of the large-scale currents and the latitude
at which they occur are thus relevant.

According to the present results, if the energy W is in-

jected into the wave system at co=20 by tidal forces,
then the part Wf/20 =Wsinp should be transferred into
the energy of anticyclonic rotation. A corresponding part
3176

of the energy of storm surges should also go into the con-
densate. The higher the latitude the more energy comes
to the condensate. On the other hand, the torque exerted

by currents is proportional to cosp. The main contribu-
tion stems thus from mid-latitudes. Account of real
coastal geometry is needed for quantitative calculations.
Though qualitative, the present concept of an inverse cas-
cade and of condensate creation explains the existence of
the large-scale anticyclonic currents that are necessary
for the Broshe-Sundermann picture to be valid. Note
that the presence of a large-scale anticyclonic flow in the
equilibrium of a rotating fluid was already discussed (see
[5,18] and references therein). Here we have shown how

such a flow is produced by wave turbulence.
To conclude, we obtain the steady spectra of the tur-

bulence of inertio-gravity waves and show that they cause
the creation of the stable condensate. It explains the
presence of a sharp peak at to=f in the observational
data [2-4,6].

Discussions with S. Medvedev and S. Turitsyn as well

as helpful remarks of V. Steinberg are gratefully ac-
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