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Self-Consistent Theory of Freezing of the Classical One-Component Plasma
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A new formulation of the modified weighted density approximation of inhomogeneous classical fluids
is presented which is exact to third order in the functional expansion of the excess free energy but in-
cludes, approximately, correlations to all orders. It requires as input the pair and triplet structure of the
uniform liquid, and when applied to the one-component plasma yields results which are in good agree-
ment with simulation data.

PACS numbers: 64.70.Dv, 05.70.—a, 64.60.—i

It has been shown [1] that for systems interacting by
means of purely repulsive power-law potentials, —r ™,
the change in specific volume Av on melting approaches
zero as m d, where d is the dimensionality of the sys-
tem. When m ~d, the thermodynamic functions are
undefined, unless the system is provided with a "uniform
neutralizing background, "

in which case d, v at melting
again vanishes [ll. The dense one-component plasma
(OCP; rn =1; ion charge Ze) [2] is a case in point: it
freezes under constant density, and not under the usual
condition of constant pressure [3]. Here we examine the
application of density-functional theory (DFT) to this
problem of isochoric freezing, and propose a new approx-
imation to deal with it.

The excess thermodynamic properties of the OCP de-

pend on a single dimensionless variable, the plasma pa-
rameter I defined by

I"=P(Ze) /a (P = I/ktt T),

where a is the "ion-sphere radius" [(4tr/3)a =p '].
The crystallization of the OCP into a bcc solid has been
the object of extensive simulation work [4] and the best
current estimate of the value of I at which the freezing
transition is observed is I, =178.

The density-functional approach to crystallization is

based on the theorem [51 that the Helmholtz free energy
F[p(r)] of an inhomogeneous system is a unique func
tional of the one-particle density p(r), which in a crystal-
line solid is extremely inhomogeneous. A widely used

version of DFT is that of Ramakrishnan and YussoufI'
(RY) [6], in which a functional Taylor expansion is made
of the excess Helmholtz free energy of the solid, about
the density of a uniform liquid, and is usually truncated
at second order. This approximation has proven to be
reasonably successful in studying the freezing of a hard-
sphere liquid [6,7] but so far is unable to predict freezing
for a system with a long-ranged interaction, such as the
OCP [8]. An alternative self-consistent approach is the
modified weighted density approximation (MWDA) [9]
based on coarse-graining ideas of Tarazona and others
[10], and a straightforward application of this theory to
the isochoric melting of the classical OCP also fails to
predict any freezing, as noted earlier by Zeng and Oxtoby
[11]. On the other hand, the MWDA is reported to be
successful for the study of quantum freezing of jellium
[12]. In the MWDA, as in other functional approaches,
the excess Helmholtz free energy of the solid, F,„[p(r)],
is approximated by that of a liquid at a certain weighted
density p[p(r)], which is evaluated self-consistently, but
in a way that guarantees that the approximate functional
F,„"(p)is exact to second order in the RY expansion.
The self-consistency requirement in the determination of
p also guarantees that in general there are contributions
from all higher orders in the functional expansion includ-
ed in the MWDA functional. Indeed, it can be shown for
the MWDA that, provided dv/0, the third-order contri-
bution to the MAZDA functional is nonzero and extensive
[13]. However, this result no longer holds for an isochor
ic transition. This can be seen noting that the third-order
contribution to F,„[p(r)] is given by

F„=—
J "cpt (r, r', r";p) [p(r) —p] [p(r') —p] [p(r") —p] dr dr'dr", (2)

where p is the density of the uniform liquid. But if we
now use ct%

1 as given in Ref. [13],and take into account
the fact that the aUerage densities of the solid and the
liquid are constrained to be equal in isochoric melting, we

see that F,„ for the MWDA must vanish. A similar con-
clusion can be drawn for all higher contributions to
F,„,so that for an isochoric transition the MWDA is

operationally equivalent to the original RY theory, trun-
cated at second order. The inability of the MWDA to
predict freezing for the OCP is now seen to be predeter-

F„[p(r)]=F.,(p) =—&fp(p) (3)

with fp denoting the excess free energy per particle of the

mined by the condition Av =0; for short-ranged interac-
tions the M%'DA appears to be adequate, otherwise.

To deal with this difficulty we follow earlier work [9],
and write the Helmoltz free energy of the solid as a sum
of the "ideal" and the "excess" parts, where the latter is

approximated by
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uniform liquid. The weighted density p is now constructed from the one-particle density p(r) of the solid phase by go-

ing beyond MWDA [9] [the first term in (4)] and expanding self-consistently to one higher order; thus we write

p =—
J „w(r —r';p) p(r) p(r')dr dr'+ J „v(r—r', r —r";p)p(r) p(r') p(r")dr dr'dr", (4)

where the sought-for p appears as an argument in the weight function w, and also in the new weight function v. The

weight functions must both be normalized [cf. Eq. (12) in Ref. [9]], i.e.,

w(r —r';p)d(r —r')+ — v(r —r', r —r";p)d(r —r')d(r —r") =1,
4 V4

(5)

but, though two functions are connected by a single con-
dition, they can be selected through further approxima-
tion by choosing them for a restricted set of possibilities,
for example, by requiring that they separately satisfy the
normalization conditions

„w(r —r';p)d(r —r') =C,

(6b)

a constraint on the function v, namely, that its integral
over any of its two arguments must be a constant, in-

dependent of the value of the other. A unique specifi-
cation of w and v follows if we impose the conditions that
the second and third functional derivatives of the approx-

(6a) imate excess free-energy functional of Eq. (3) with

respect to the density are, in the uniform density limit,

(r —r', r —r"; ")d(r —r') =1 —C, equal to —k&T times the second- and third-order direct
correlation functions of the uniform liquid, respectively.

where Cis an arbitrary constant. Equation (6b) imposes In k space, we then obtain simple expressions for the
weight functions w and v, namely,

—p 'C0 (k;p0) =2f0(p0)(l —C)bg 0+p((f0'(p0)b/; 0+2f0(p0)w(k;p0), (7)

found previously [9], and

I I

—p (C0O (k, k';p0) = —6 +6C +3f0'(p0) —6Cf0'(p0)+p((f0" (p0) bk, obk, 0
po po

+2f0'(po) [w(k'po) b/'0+ w (k, ''po) bko+ w (k, ;p0) b(+) '0],
v (k, k';p0)

+2f0(p0) [w'(k;p0)b'k 0+w'(k';p0)bk 0+w'(k;p0)by+)r, 0]+6f0(p0) (8)

-0 'co"«=0,po) -2fo(po)+p((fo'(po), (9)

is satisfied [14]. For k'=0, Eqs. (6)-(8) all ensure that
the sum rule

(3) g ( g 8C0 (k;p0)

2po
(10)

where primes denote differentiations with respect to den-

sity. For k =0, Eq. (7) along with the normalization con-
dition (6a) ensures that the compressibility sum rule,

is satisfied for every k.
To apply this approximate theory, we determine the ex-

cess free energy of an OCP bcc solid (reciprocal-lattice
vectors [G]), add to it the exact ideal part of the free en-

ergy, and then minimize with respect to a single varia-
tional parameter, namely, the specified localization pa-
rameter a of the Gaussians which are taken to model the
one-particle density of the solid [15]. Comparison of this
minimum with the known liquid free energy will then
determine the freezing transition, if it exists. Following
Ref. [9] and using Eq. (4) we find for the Gaussian model
the self-consistency condition on the requisite p,

"(p ) 1 g —6 /2a (2) (G. ") ' g g —)(' /4a —g /4a —(K+Q) /4a (3)(g q.p)
2pf0(p) Ga-'0 6pf0(p) Ka.'0 Q~O. —K

which can in principle be applied to the freezing of any system. For the OCP with average solid density p, we can make
use of the fact that 1 cx: p'/, and reexpress the iteration implied by (11) in terms of a weighted plasma parameter I . For
the required excess free energy per ion of the liquid phase of the OCP, we adopt the expression of DeWitt, Slattery, and
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Stringfellow [4]:

Pfp(l ) =ar+ —r'+c lnI —a+ —+db, b

s
(i 2)

where a= —0.8992, b=0.596, c= —0.268, s=0.3253,
and d=0.4363. For the required second-order direct
correlation function co, we use the generalized mean
spherical approximation (GMSA) of Chaturvedi, Sena-
tore, and Tosi [16],which has the particular advantage of
being analytic and which gives results in excellent agree-
ment with simulation data for a wide range of 1 in the
strong-coupling regime. Thermodynamic consistency re-
quires that the k 0 limit of the structure factor S(k)
[and hence cot 1(k)] must be related to the free energy of
the system [E . (12)l and its derivatives. When approxi-
mations to cot are used, as with the GMSA, consistency
can nevertheless still be maintained, and we do this here

by following the procedure of Chaturvedi, Senatore, and
Tosi [16].

Although the triplet structure of uniform liquids is still
relatively poorly known in general, several diA'erent

schemes have recently been developed [17-20] to approx-
imate co . Here, we present results obtained using two
different approximations, namely,
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co (r, r') =h(r)h(r')h(Ir —r'I), (i3)

which has been introduced by Iyetomi and Ichimaru [17],
and

co (r, r') =t(r)t(r')t(Ir —r'I), (i4)

This choice is already sufficient to guarantee conver-
gence of the double summation in Eq. (11),meaning that
inclusion of more triangles than those indicated does not
change the sum by more than 1% for a Gaussian width
parameter aa =12 at which point the total free energy
has a minimum at freezing (Fig. I). With approximation
(13), on the other hand, convergence of the double sum-

mation in Eq. (11) is somewhat slower, though ultimately

introduced by Barrat, Hansen, and Pastore [20]. In (13),
h(r)= g(r) —1; in—(14), the more general function t(r)
can be unambiguously determined by using the exact re-

lation (10) between cc and cc . In both cases, we in-

clude contributions from 100 shells in the reci-
procal-lattice summation of Eq. (11). The second sum-

mation in this equation is performed over "triangles"
formed by reciprocal-lattice vectors and, following Ref.
[19],we characterize each triangle by the triplet (l, m, n)
of indices each numbering a star of the reciprocal-lattice
vectors. With approximation (14) used for cot 1, we sum

over the following 28 sets of triangles:

n=l, 1 ~I~5, l~m~ ll [19]

n=2, 2~I ~4, I ~m ~9 [6]

n=3, l=3, I~m~5 [3].

FIG. 1. Total free energy vs localization parameter a for the

bcc OCP solid at various coupling constants I. The solid line

represents results obtained with approximation (14) used for

co, and the dashed line results obtained with approximation

(13). Inset: Ideal-gas (favoring delocalization) and excess

(favoring localization) free energies for I 180; displayed here

are PF;d/N and PF,JN PF,„(a=0)/—N+ 5, where PF,„(a
-0)/N —139.83 (see below).

guaranteed by the Gaussian factors. It is known [8,17]
that for larger values of its arguments, approximation
(13) itself is quite inaccurate, and for this reason we fol-

low Barrat [8] by including only the (1,1,1) and (1,1,2)
sets in order to provide a comparison. Figure I illustrates

the dependence of F, F;d, and F,„on the localization pa-

rameter a with approximations (13) and (14) used for

co . Figure 2 illustrates the dependence of the weighted

plasma parameter I on the localization parameter [21]
for I =180, again with approximations (13) and (14)
used for co

Referring to Fig. 1, we find that with approximation

(13) freezing occurs at I =183, and with approximation

(14) at I =176, both in quite good agreement with simu-

lation data [4]. The Lindemann ratio L and the change
of entropy AS/Nkg upon melting are respectively given

by 0.17 and —0.74 with approximation (13) used for

cc, and 0.20 and —0.87 with approximation (14).
Again, these results are in good agreement with the simu-

lation results, L =0.17 and AS/Nktt = —0.80, respective-

ly [2]. Speciftc values of the critical parameters can be

quite sensitive to the particular approximation used for

the third-order correlation function. In fact, the estab-
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classical systems, and can therefore be directly applied to
any system described by an inverse power-law potential.
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FIG. 2. The weighted plasma parameter 1 vs localization pa-

rameter a for the bcc OCP solid at coupling constant I 180.
Solid line: results obtained with approximation (14) used for
cga. Dashed line: results obtained with approximation (13)
used for cga.

lishment of freezing in a reasonable range of I seems to
raise itself as a possible test of the quality in which other
theories determine the details of co

The major point, however, is that as suggested earlier
by Barrat [Sl explicit inclusion of the three-particle
correlation eA'ects appears necessary in order to predict
the constant-volume freezing of the OCP, and a more de-
tailed knowledge of the third-order direct correlation
function is now clearly of great significance. In particu-
lar, the details of co (k, k') which are important to the
location of the freezing transition (if it exists) are the
values of this function at nonzero wave vectors; the most
important are the (1,1, 1) and (1,1,2) triangles of reci-
procal-lattice vectors for the bcc structure. It is here that
the other approximations for co are less satisfactory, in-

cluding the WDA [18] and MWDA [19] themselves.
The new approximation is by construction exact to third
order in the functional expansion of the excess free ener-

gy. The self-consistency requirement between the weight
density and the argument of the weight functions again
guarantees that in general the new free-energy functional
must include, at least approximately, correlations from
all higher orders. But in exactly the way that the
MWDA was shown to be equivalent to a second-order
RY expansion for the special case of isoehoric freezing,
so it can be shown that the new approximation is

equivalent to a third-order RY theory for such a freezing
transition. The practical advantage of inclusion of higher
than third-order correlations can therefore be lost when a
constraint h, v =0 is imposed. Nevertheless, it is particu-
larly interesting to note that the third-order correction to
the excess free energy is equivalent in its egect to an al-
most complete elimination of the contribution from the
[200] star of reciprocal-lattice vectors in the second
order theory; this accounts for but does not justify the
earlier success of a "truncated" second-order theory
[3,22], in which the contribution from this star is arbi-
trarily omitted. Finally, we reiterate that the approach is
a nonperturbative, self-consistent theory of nonuniform
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