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C. W. Johnson, S. E. Koonin, G. H. Lang, and W. E. Ormand
W. K. Kellogg Radiation Laboratory, California Institute of Technology, Pasadena, California 91125

(Received 31 August 1992)

We present novel Monte Carlo methods for treating the interacting shell model that allow exact
calculations much larger than those heretofore possible. The two-body interaction is linearized by
an auxiliary field; Monte Carlo evaluation of the resulting functional integral gives ground-state or
thermal expectation values of few-body operators. The "sign problem" generic to quantum Monte
Carlo calculations is absent in a number of cases. We discuss the favorable scaling of these methods
with nucleon number and basis size and their suitability to parallel computation.

PACS numbers: 21.60.Cs, 02.70.+d, 21.60.Ka

The shell model (valence fermions confined by a one-

body potential and infiuencing each other through a
residual two-body interaction) is a ubiquitous framework
for the quantum many-body problem and is often the
method of choice for describing nuclear structure [1]. For
example, the low-lying spectra and one-body transition
matrix elements of nuclei with 17 & A ( 39 are very well

described by the exact diagonalization of an effective two-

body Hamiltonian within the single-particle basis of the
ld5/2 lds/2-2si/2 orbitals [2] .

Unfortunately, the combinatorial growth of the dimen-

sion of the many-body basis with both the number of
valence particles (N~) and the size of the single-particle
basis (Ns) precludes an exact treatment for most larger
nuclei and forces what are often ad hoc truncations of
the many-body basis. The J = 0+, T = 0 states of
2sSi are obtained by constructing and diagonalizing an
839 x 839 Hamiltonian matrix in the sd-shell basis noted
above. A similar calculation for s Zn in the middle of
the next major shell (ten neutrons and ten protons in

the 1f7/2 1fs/z 2ps/2-2pi/2-orbit-als) would increase the
dimension to 5, 053, 574 and is clearly beyond the reach
of today's computers.

In this Letter, we discuss Monte Carlo methods for the
exact treatment of a shell-model Hamiltonian, H. They
are based on using the imaginary-time, many-body evolu-
tion operator, exp( —PH), either to define the canonical
or grand canonical ensemble at a temperature P or,
for large P, to filter a many-body trial state to the ex-
act ground state; thus both thermodynamic and ground-
state properties can be obtained. Relative to direct diag-
onalization, these methods scale much more gently with
Ns and/or N~, and hence hold the promise of extend-
ing complete shell-model calculations to much larger sys-
tems.

Our methods broadly follow previous work on the Hub-
bard model [3] and coordinate-space fermion systems [4],
but difFer significantly in detail due to the peculiarities
of the nuclear shell model. A general expression for H is

a =) e.v. + —) V.O.',
where the 0 are a set of noncommuting one-body oper-

ators, the c numbers e~ are related to the single-particle
energies, and the c numbers V characterize the resid-
ual interaction. A minimal choice for the 8 is the set
of Hermitian and anti-Hermitian parts of the multipole
density operators, pKM = [a x a]KM. In this case, the V
are related by a Pandya transformation to the usual two-
body matrix elements of the residual interaction. How-
ever, even for a fixed H, there is considerable freedom
in writing Eq. (1). For example, arbitrary symmetrized
two-body matrix elements of the residual interaction have
no effect on the (antisymmetric) eigenstates and eigenval-
ues of H, but do change the V . Additionally, the density
operators could be supplemented by the suitably Hermi-
tized pair operators 6&M

——[a x a ]~M and their adjoints,
which might be convenient given the strong pairing char-
acter of the residual interaction.

For a concrete illustration, we consider refining a trial
determinant l4') to the exact ground state; details of im-
plementation and other applications will be given else-
where [5]. For any observable operator 0, we define

(e]e /'"»Oe »/-'le)-
(~l -'"l~) (2)

In the limit P ~ oo, (0) approaches the required ground-
state expectation value (as long as l4} is not orthogonal
to the true ground state). We divide the "time" P into
an even number, N&, of equal intervals of duration b P =
P/N& and introduce a real auxiliary field o „coupled
to each operator 0 at each time slice n = 1, . . . , N, .
Then, in the limit 6P ~ 0, the Hubbard-Stratonovich
transformation allows (0) to be written as

I&[o]W(o) C'(o)0(o)
j 'D[o.

]W(o) C (o )
(3)

Here, the one-body evolution operators are U(k, j)
.+iU„, with U„= exp( —APh„), the one-body

Here, 17[o] = Q „do „and the integral extends over all
real fields. The positive definite "weight function" is

W(o) = ex&
l

—2&P) lV lo „&@l&(N&,0)l@} .( 1

2

(4)
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Hamiltonian being

h„=) eO +) Vscr„O

wheres =+1 if V &Oands =iif V &0. The
remaining functions in the integrand are the "observable"

(4[U(Ng, Ng/2) OU(Ng/2, 0) [4)
(4 [U(N„O) [4)

and the "sign, "

(4 iU(N„0) i@)

(~IU(N, o) l~)
Similar expressions, valid for Nq either even or odd, can
be written for the grand canonical trace (with the intro-
duction of chemical potentials) or for the canonical trace
(using coherent states or an expansion in the fugacity)

The advantages of these expressions are manifest. The
h„are one-body operators, so that the action of U„on a
determinant is particularly simple. Indeed, the 0, h„,
and U„can be represented as Ng x Ng matrices, while
the determinant [@)can be defined by Ni single-particle
wave functions (each a vector of dimension Ns). Hence
all of the quantum mechanics can be done explicitly by
matrix manipulation, while the integrals over the o. „
can be done by standard Monte Carlo methods (e.g. , the
Metropolis algorithm). Of course, N& must be chosen
large enough so that the AP ~ 0 limit is practically
satisfied.

As noted above, our methods have several antecedents.
Relative to simulations of the Hubbard model [3], the
number of single-particle orbitals is considerably smaller
than the typical number of lattice sites, and even rela-

tively small fillings are of interest. Further, the shell-

model operators 0 are fully nonlocal in the basis, rather
than being at most nearest-neighbor hopping. Finally,
proportionately smaller values of P are of interest in the
nuclear problem. As shown below, P[V [+20 can yield
useful results, while for an on-site Hubbard repulsion of
1 eV, a temperature of 100 K implies P[V [

120. Other
authors have presented path-integral calculations of the
nuclear shell model [6]. However, these have generally
been based on the uncontrolled static path approxima-
tion (SPA) in which the fields have no time dependence
(harmonic corrections to the SPA have also been consid-

ered). Further, only the simplest schematic interactions
have been treated.

To demonstrate our methods, we calculate ground-
state properties of 24Mg and 4sCr via Eqs. (3)—(6), re-

spectively, in the sd- and pf-shell bases. While these
calculations are not quite as demanding as those at the
middle of the respective shells (2sSi and PPZn), these nu-

clei are deformed and hence present nontrivial problems.
As noted above, Hamiltonians in the sd shell can be diag-
onalized exactly, allowing a rigorous test of our methods;
diagonalization of the 4sCr Hamiltonian in the pf space

is at today's computational limit.
For these first calculations, we have used an interaction

of the "pairing + multipole" form:

V=Vp...+V „„,. (7)
This interaction is complicated enough to demonstrate
the power of our methods, but is not meant to produce
observables that can be compared directly to experiment.
The pairing is taken to be of constant strength and isovec-
tor monopole character:

Vpair = —G [a~ x a~]J—pT —i [a~ x a~ ]j—pT —1.t t

23'

(10)

For the multipole force, we take

Vmulti = ) GLfL(rl)fL(r2)+L(rl) ' ~L(r2) (9)
L=0,2,4

where the radial functions are fp = 1 and

fr.&p(r) = r g dg

with g a Woods-Saxon function. Two-body matrix ele-
ments of V~„ii,; were calculated in a harmonic oscillator
single-particle basis. The values of the interaction param-
eters and single-particle energies were chosen to roughly
reproduce the T = 1 two-body matrix elements of the
sd-shell Wildenthal interaction [2].

We note that our interaction is not as simple as it
might appear. As we rewrite the pairing interaction in
the form of Eq. (1) with the 0 chosen as density op-
erators, we must introduce all possible fields. This con-
trasts sharply with previous treatments of the nuclear
shell model [6], where the forces were chosen so that only
a small number of fields (five in the case of SPA for a
quadrupole-quadrupole interaction) were needed. In our
largest calculations, 9600 fields were required.

Of course, an interaction of the form (7)—(9) is not the
most general possible. We have found that when a gen-
eral residual interaction (e.g. , the antisymmetrized two-

body matrix elements of the Wildenthal interaction [2]) is
arbitrarily linearized via the Hubbard-Stratonovich rep-
resentation, the so-called "sign problem" can arise; that
is, 4(o') in Eq. (6b) can be both positive and negative,
so that the resulting cancellation leads to unacceptable
statistical fluctuations. However, it is possible to prove
that an interaction of the form (7)—(9), when applied to
Tz = 0 nuclei, is completely free of the sign problem.

We have been able to show empirically that the flexi-
bility in formulating the integral to be calculated (using
varying proportions of the density or pairing breakups,
and adding "nonphysical" symmetrized two-body ma-
trix elements) can be used to mitigate the sign problem.
While we can use this flexibility only in an ad hoc man-
ner at present and do not fully understand the sources of
(and solutions to) the sign problem for a general interac-
tion, we are optimistic that a wide range of interactions
will be tractable.

Figures 1(a) and 1(b) show, for 4Mg and Cr, re-
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TABLE I. Computational time for shell-model calcula-
tions.

Nucleus

(Ns/Nv)'

Mg
(24/8)

28S.

(24/12)

48C

(40/8)

Zn

(40/20)

Basis size
J =O, T=0

325
(28,503)

839
(93,710)

9741
(1 963 461)

5 053 574
(2.5 x 10 )

Time (i860 node hours)
Diagonalization' Monte Carlo

0.04' 607

0 4' 670

~ 40~

4x10

Ng is the number of single-particle orbits and Nv is the
number of valence nucleons.

In parentheses are the total number of Jz = 0 m-scheme
Slater determinants from which J = 0, T = 0 states are pro-

jected.
'Time to compute only the ground state.

Time for 3000 samples, giving the precision showa. in Fig. 1,
with N& —— 24 and with adequate decorrelation of the
Metropolis random walk. No extraordinary effort has been
made to optimize performance.
'Scaled from OXBASH calculations on VAX 3100 workstation.
'Estimate using the Glasgow-Los Alamos-Seattle code [8].

allel computer architectures. The Monte Carlo calcula-
tions presented here were performed on the Intel Touch-
stone Gamma and Delta parallel supercomputers, with
64 and 512 nodes, respectively. Each of these nodes is
an i860 processor that runs our code at a speed of 5

double-precision Mflops. The number of node hours for
each calculation is given in the third column of Table I.

Zn calculations are clearly feasible (indeed, we have
done them) and even a full sd pf calcul-ation would be
possible.

Future work will include not only a further investiga. -

tion of the sign problem and use of more general resid-
ual interactions, but also applications to partition func-
tions and level densities, strength functions (e.g. , the El,
F2, and Garnow-Teller responses), high-spin nuclei, and
problems in nuclear astrophysics.
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