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Steady State in Magnetic Resonance Pulse Experiments
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Relaxation during multiple-pulse magnetic resonance experiments is treated by an average Liouvillian

technique. The finite lattice temperature is taken into account by means of phenomenological correction
terms. Both the transient and long-term response of the spin system are readily treated. %e predict and
verify a novel steady state of correlated spin polarizations in a spin-pair system under a periodic se-

quence of strong z pulses.

PACS numbers: 76.60, Es

We report a new formulation of average Liouvillian
theory for treating the behavior of a nuclear spin system
during multiple-pulse irradiation. In contrast with previ-
ous approaches [1,2], spin-lattice relaxation is included,
within the limitations of a high-temperature assumption
for the spin system. The method is applicable to any nu-

clear spin system weakly coupled to a thermal reservoir.
We illustrate the theory by predicting an unusual steady
state of correlated spin polarizations for coupled nuclear
spin pairs exposed to a sequence of strong radio-fre-

quency z pulses.
It has long been recognized that spin-lattice relaxation

is awkward to treat theoretically. Semiclassical relaxa-
tion theories [31 provide a treatment of the relaxation
rates but predict a false equilibrium position involving

the destruction of spin order rather than a Boltzmann
population distribution. A phenomenological term cr'" is

usually added to the evolution equation of the spin densi-

ty operator o so as to impose the correct thermal equilib-
rium state: Under well-known approximations, this
"master equation" is [3-5]

(d/dt)o = —i Per+1 (cr —cr'q),
P

where & is the commutation superoperator for the
coherent spin-spin and spin-field interactions, and I is the
relaxation superoperator (a single caret indicates a su-

peroperator).
Equation (1) is awkward to use since it is homogeneous

in neither o nor o —O'. The spin evolution cannot be
represented as a linear transformation in Liouville space.
This greatly complicates the task of formulating the in-

terplay of relaxation and external irradiation. It has not

been possible to formulate an "average relaxation super-
operator" analogous to the "average Hamiltonian" used
1'or the coherent evolution [1]. A general theory of the
steady-state under multiple-pulse irradiation does not ex-
ist.

In the following treatment we use the following nota-
tion: A spin system has n eigenstates ~r) defined by
//" ~r) =co, ~r& where co„are the state energies (angu-
lar frequency units). A superspace of n orthonormal
spin operators [ . .

(Qt&
. . I, denoted by bold kets. is

constructed [51: The superspace metric is (Qt ( Qk)
=Tr[QJ Qt, I =6tk, the matrix elements of a superopera-

tor S are given by Slk =(Q~(S(Qk). The density operator
is represented by a superket )cr) and the unit operator by

(X& with (I[3.&=
n. The population operator (projector)

~r)(r~ of the spin state ~r& is denoted by (P„). The symbol

P, denotes a superproj ector onto the ket (P,), i.e.,

P, = (P,)(P, [. The superprojector onto the unity operator
is defined P, =n '[]l)(I[.

Jeener [5] showed that Eq. (1) may be rendered homo-

geneous by "improving" I rather than adding a 0'q term.
In Liouville space the new master equation has the form

(d/dt)[a) =( t/t'+Y))cr)

with the adjusted relaxation superoperator

(2)

Y=I +8.
8 may be derived as follows: The matrix elements

(P„(l (P, ) of the relaxation superoperator are the state
transition probabilities W„,: For a lattice of temperature
T, the probability W„ for a transition ~r& ~s& differs
from that for the transition ~s& ~r& by the small factor
exp[(co, —co, ) zeI, where r tt= 6/kT (dimensions of time).
This suggests the following form for the adjusted relaxa-
tion superoperator:

i =f'exp[covttl, (3)

where

to =ZcorPr (4)

and the mean energy is assumed to be zero ((I[co)I)=0).
The thermal correction is therefore 8=I are correct to
first order in r~. In practice it is convenient to insert an

additional projector and write
A A0=I mP, zq

This is possible since those density operator components
which are perpendicular to the unity operator have small

magnitudes =
~

~itor e~ [.
We now consider a specific Liouville basis such that the

h'rst ket is given by the normalized unity operator [Qt&
=n 't [I), and all the other kets are operators with zero
trace. The matrix elements of e are given in terms of the
Redfield matrix elements I,I by
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8jk =n 'Tr{gk}Z&gj II II' & re

n Bk / QFj((g(lljlz&%pre
I,p

(6)

(d/di) V(t) = —iP(t) V(t) .

The equation of motion is

(d/dr ) IB (r)) =Y(t) I8(t)&

where

Y(r) =V(i)tYV(r).

The Magnus expansion is used to estimate an average re-
laxation superoperator over a time z, under the usual
convergence conditions (1):

I8 (r)& =exp{Y(r)}lcr(0)),

Y(r) =Y (r)+Y (r)+
where

Y"'(r) =r '), chic(ti),
n

Y ' (r) =(2r) '„dt2 dt~[ (Y)i, 2(Y~)rl,

and so on. Irradiation schemes may be designed such
that Y has desirable properties (such as the suppression
of undesirable relaxation pathways), while the correction
terms Y ' + . . are kept as small as possible. This
average Liouvillian method improves on average Hamil-
tonian theory by making it possible to treat the long-term
as well as the short-term spin response.

As an example consider a system of two unlike spins—1/2 I and S in a liquid (n =4), in the presence of a

where each spin I„has a longitudinal angular momentum
operator II„,) and a Larmor frequency ro„. The last ex-
pression is valid in the high-field limit (Larmor frequency
much larger than all other interactions).

Unlike I, the corrected relaxation matrix Y is asym-
metric It r. epresents a unidirectional fiow from lg~) into
the other spin operators, where the order is redistributed
and dissipated. Since (3.II 0, the first row of Y contains
only zeros, and the eigenvalues of Y are the same as those
of I: The finite lattice temperature affects the position
but not the rates of thermal equilibration (in the high-
temperature approximation). The steady-state density
operator for time-independent 8 and I may be calculat-
ed from the null space of —iP+Y. For /t'=0, the
correct thermal equilibrium density operator

lo "&=n '(1 —rere&II&

is predicted.
For time-dependent P an interaction frame and/or

Magnus expansion technique may be used [1]. An in-

teraction frame density operator I8(t)) =V(t) tlat') is de-
fined where V satisfies

Oi
Y=

~s

pi &is ~i.is

~is ps ~s.is

~is ~i.is ~s.is pis

Here Pi, Ps, and Pis are decay rates for longitudinal sPin

order, vis is the cross-relaxation rate constant, and aliis,
Bsis are rate constants for the transfer of one-spin order
to two-spin order driven by CSA and DD cross correla-
tion [6,7].

From Eq. (6), the thermal correction terms are

2 (Pii+&iss&re ~

fjs =
2 (&isP+Pss&r e

eis= 2 (~usi+~s. isis)re
where roi, cos are the Larmor frequencies of the I and S
spins.

Now consider two simple experiments involving period-
ic z pulse sequences. In Experiment A, the x pulses are
applied to the I spins alone. In Experiment B, the ir

pulses are applied simultaneously to both spin species. In
both cases, the z pulses are repeated at intervals of r/2.
We consider the properties of the effective Liouvillian
over the element [r/4 —ir —r/2 —ir —r/4], which is cy-
clic in the sense that V(r) =1. Since the interaction
frame is symmetric [V(r —t) =V(t)], Y ' and all odd
Magnus powers vanish [1]. We assume that the pulsing
rate r ' is much faster than the relaxation and consider
only the zeroth-order Magnus term Y (the average
Liouvillian over the cycle).

For infinitely short z pulses the interaction frame su-
peroperator toggles between two values, Y and H YH,
where fl is the superoperator for the ir pulse. Ideal ir

pulses transform the four basis operators according to

IIlgj& =~, lg, &, (9)

where nj = ~ 1 is the pari jy of I Qj&. The average
Liouvillian is the sum of a gerade component Yg, and an
ungerade component Y„, where Ye has matrix elements
only between operators with even parity (including
I —,

' jt&), and Y„has matrix elements only between opera-
tors with odd parity.

Experiment A: x pulses applied to I spins. The
gerade subspace is spanned by the operators {I 2 I), IS,)},
and the ungerade space by the operators {II,&, I2I,S,&}.
The two components of the average Liouvillian are given

variety of relaxation mechanisms including motional
modulational of the chemical shift anisotropy (CSA) and
the dipole-dipole coupling between the spins (DD), not
excluding cross correlation between these two rnecha-
nisms [6]. Under the secular approximation [3], the ma-
trix elements of Y are written in the base of the four nor-
malized Cartesian product operators [4] {I q I), II, &,

IS,&, 2I,S,)} as follows:

0
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)o'
) o

&2I, Sz~ '

[-,'» (21,5, &

(0
(els

o

Pis ) (l2)

Pl &IS
~u =I

~IS Ps

The dynamics in the ungerade subspace represent a
redistribution of Zeeman order between the I spins and 5
spins under the influence of the cross-relaxation rate o.ls,
free from perturbation by cross correlation. As before,
all order dies out in the ungerade subspace at long times.

The behavior of the gerade subspace is particularly in-

(lo)
)I, ) )21,5, )

( Pr ~-r rsi

~I Is . Pls )
The gerade superoperator is asymmetric and represents

a flow of order in which the S spins acquire a Zeeman po-
larization (S,) =(5,(a) at a rate Hs( 2 X), and lose it at a
rate ps(s, ). At long times, a steady-state S spin polar-
ization is attained, for which these two rates become
equal: This is readily evaluated in terms of the thermal
equilibrium S-spin polarization (5,)'q =(S,)a'") as

(S,)" ciis rui=1+
(Sz) ' psIIIs

which is just the ordinary steady-state nuclear Over-
hauser effect [8], here arising naturally from an average
Liouvillian description.

The ungerade superoperator represents a redistribution
and dissipation of order in the subspace [~I,), ~21,5, )].
The transfer rates are aff'ected only by the CSA and DD
cross correlation, oA'ering a means for isolating and

measuring these weak processes, in similar fashion to
Burghardt, Konrat, and Bodenhausen [9], as will be de-
scribed in detail elsewhere. Since Y„has only negative
eigenvalues, no order remains in the ungerade subspace
at long times.

Experiment B: Ir pulses applied simultaneously to I
and S spins This time the . gerade subspace is spanned by
the operators [) 2 ll), (21,5,)], and the ungerade space by

the operators [(I,), (s,)]. The components of the average
Liouvillian are

10 20

time (sec)
30 40

FIG. 1. Trajectories of (I,), (S,), and (2I,S,) as a function of
time during a periodic sequence of composite x pulses applied to
both spin species (normalized with respect to (5,)'q). Solid
curves are simulations (see text).

teresting. By analogy with experiment A, a steady-state
of Iivo spin -order is predicted at long times, given in

terms of the thermal equilibrium 5-spin Zeeman polar-
ization by

~i Isrui+ ~s .Isrus.
piscus

(l3)

According to its sign, the steady-state value of (21,S,) in-

dicates a persistent (anti)correlation of the spin polariza-
tions along the field. It arises when the driving fields and
the microscopic interactions causing relaxation are both
correlated. The eA'ect can be quite considerable and
oA'ers a sensitive measurement of cross correlation. The
value of (2I,S,) is easily estimated from the asymmetry
of the J-coupled doublet after Fourier transformation of
the signal induced by a Ir/2 pulse applied to one of the
spin species.

Figure I shows some experimental results for C-
labeled chloroform in ethylene glycol solution (I='H,
5 = ' C) in a field of 4.7 T at 300 K. The values of (I,),
(S,), and (21,5, ) are shown after an increasing number
of cycles [—r/4 —Ir —r/2 —Ir —r/4] applied to a ther-
mal equilibrium density operator. The cycle period was

~ =200 ms: Composite z pulses with flip angles
[Ir/2, 2ir, Ir/2] and phases [0,2Ir/3, 0] were used throughout
to compensate radio-frequency field inhomogeneity [10].
The Zeeman magnetizations (I,) and (S, ) decay to zero
~bile (21,5, ) gradually builds up to a steady state of
—18% of (5,)'". The simulated curves are based on Eq.
(l 2), with parameters as in Ref. [7], except for

6s.ls = 13-7 x 10 s
In summary, we have demonstrated an average

Liouvillian approach which resolves long-standing prob-
lems concerning the proper treatment of spin-lattice re-
laxation in multiple-pulse sequences. The theory is cap-
able of generating existing results such as the steady-state
nuclear Overhauser eAect in a simple and intuitive way,
as well as predicting new and surprising results such as
the establishment of steady-state two-spin order in the
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presence of a long z pulse train. This appears to open up
an entirely new approach to magnetic resonance pulse se-
quence design based on manipulating the steady-state be-
havior of pulse sequences rather than exploiting their
short-term transient performance. When relaxation is

fast this may be particularly advantageous. Although im-
mediate applications are likely in nuclear magnetic reso-
nance, a similar approach may be expected to be useful in

microwave and optical spectroscopy as well (bearing in

mind the limitations of the high-temperature approxima-
tion). Indeed spin-lattice relaxation (or spontaneous de-

cay) is of even more significance in those cases.
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