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Low-Temperature Studies of the NOIR Frequency Shift in SuperAuid 3He-A
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We report the first measurements of the longitudinal resonance frequency [vt,„s(A)] in He-A in the
low-temperature limit, as well as new measurements near T, . In the low-temperature limit, our data
agree well with theoretically predicted behavior. The data allow us to make the first estimates of the
BCS cutoff energy as a function of pressure and of the zero-temperature A-phase energy gap.

PACS numbers: 67.50.Fi

The 2 and 8 phases of superfluid He have been
identified as p-wave BCS superfluids, probably the
Anderson-Brinkman-Morel (ABM) and Balian-Wertha-
mer (BW) states, respectively [1]. The A phase is ener-
getically preferred to the 8 phase only in a narrow tem-
perature range below the transition temperature from the
normal phase, T, . The 3 phase can, however, be super-
cooled well below [2] the equilibrium transition tempera-
ture between the two phases.

Superfluid He exhibits a resonant ringing behavior in

its magnetization following sudden changes in the applied
magnetic field. The field-independent frequency of this
longitudinal resonance in the A phase, vt»s(A), is tem-
perature dependent and closely related to the magnitude
of the order parameter and the strength of the pairing in-

teraction in the superAuid. For bulk samples [2] vt, „s(A)
is related to the usual transverse resonance frequency
(v«.,») and the Larmor frequency (vL.,„=yH ) by

v~«s(A) =v„,, „,—vL, , Using this relation, we measured
v~,„s(A) as a function of temperature and, with a new

type of sample cell that extended 2 phase supercooling
dramatically in low magnetic fields, made the first mea-
surements of vt, „s(A) in the low-temperature limit.

We designed our sample cell with the expectation that
irregularities in cell surfaces facilitated nucleation of the
8 phase. Thus, to deeply supercool the 3 phase, our cell
contained the superfluid in two smooth surfaced fused sil-
ica tubes (about 10 to 20 cm long), phase isolated from

rough surfaces by a magnetic valve. Details of the ap-
paratus and the resultant increase in supercooling have
been discussed elsewhere [3]. An NMR coil was placed
around each tube, and the coils were attached in parallel
within a conventional cw NMR spectrometer. Limited

by field gradients from the magnetic valve, the normal
liquid He signals had linewidths of about 200 Hz in a
magnetic field of 28.4 mT applied normal to the tube
axes. At this field vt, „. „, was shifted up to several kHz
above vL,. „and the shift could be measured to + 20 Hz.
A third tube contained Pt powder which was used for
pulsed NMR thermometry, calibrated against T, [4]. .

The cell was attached to a compressional chamber [5]
and a capacitance strain gauge so that we could control
and measure the sample pressure to within a millibar.

A major concern with this design was the possibility of
a heat leak into the tubes causing a temperature gradient

along them. Previous experiments [5] conducted with

this cryostat using the same heat exchanger showed the
temperature of He samples to be proportional to the
demagnetization field for temperatures above 0.35 mK.
Below about 1 mK, the temperature of the Pt thermome-
ter did not show such linearity. But, using earlier mea-
surements [6] of the thermal boundary resistance be-
tween liquid He and this supply of Pt powder, the devia-
tion could be accounted for by a 2-pW heat leak directly
into the Pt sample, possibly due to rf heating of the Pt.
The absence of a significant heat leak into the He sam-

ple tubes was further supported by the frequency shifts of
the NMR signals in the two sample tubes at 34.2 bars be-
ing identical to within 30 Hz (equivalent to AT-3 pK)
near T, , where temperature gradients would be largest
due to the low thermal conductivity. Also, the tempera-
ture dependence of the shifts closely matched previous
measurements [2] between T, and 1.6 mK. Thus, above
0.8 mK, we assumed that in equilibrium all three tubes
were at the same temperature to within + 5 p K, as indi-

cated by the Pt thermometer corrected for the heat leak.
Below 0.8 mK, we used the proportionality of the temper-
ature to the demagnetization field to obtain the tempera-
ture to + 10 pK. Thermal equilibrium was determined

by the criteria that the resonant frequency remain con-
stant for several thermal relaxation times of the samples.

Measurements of the temperature dependence of the
transverse resonance frequency were made at 5, 12, 21,
29.4, and 34.2 bars. All of the data were converted to
longitudinal resonance frequencies using Larmor frequen-
cies measured in the normal phase, corrected for the
shifts due to the fringing field from the demagnetization
stage. Although we could supercool the 2 phase farther
than had been previously possible in low magnetic fields,
the 8 phase always nucleated relatively close to T,. at the
lower pressures, limiting our data to the high-temper-
ature regime. For the 29.4- and 34.2-bar data, ho~ever,
we could measure vt,„s(A) in the low-temperature limit
as described below.

The theoretical form for the longitudinal resonance fre-

quency derived by Leggett [7] in both the ABM and BW
states is [ll]

vt', „s =a(3try h )&R )[y] /g,

where y is the gyromagnetic ratio for He, h is Planck's
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constant, (R ) is a renormalization constant which ac-
counts for the full difference between He atoms and
quasiparticles in the dipole Hamiltonian, a is —, for the
ABM state and 2 for the BW state, and g and y are the
magnetic susceptibilities and magnitudes of the order pa-
rameter of the respective states. The temperature depen-
dent [y] is given by
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where 2N(0) is the density of states at the Fermi surface,
the first integral is over the Fermi surface, 6 (=LL[k, T])
is the absolute magnitude of the superfluid energy gap, e,
is the BCS cutofl' energy which prevents the second in-

tegral from diverging, and E=(e +5 )'/ with e the
normal-state quasiparticle energy. While the identifi-
cation of the A phase with the ABM state is still under
some scrutiny, we will assume that they are equivalent in

the following analysis, an assumption which was validated
at melting pressure by previous NMR measurements [2].

Solving Eqs. (I) and (2) for the A phase in the low-

temperature limit, one obtains [4,9]
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FIG. l. Low-temperature v(„s(A) plotted against (T/T, ) at
34.2 and 29.4 bars. The lines are fits described in the text.
Also shown are values derived from 8-phase data at 33.0 bars
from Ref. [12]. Inset: The full temperature range at 34.2 bars
vs T(T, with high-temperature data from Ref. [6] shown by the

open squares.

v~,„s(A) [0]=0.327[2N(0)dzo] (R )(0.581 —1.68y+1.333y )/g, (3)

where 6~0 is the A-phase energy gap in mK at T=O
averaged over the Fermi surface (hog =42/3(hm, „)
=1.657kqT, in the weak-coupling limit), 2N(0) is in

units of 10 ' 3 'm, and y=]n(h~o/e, ). Given [10]
that the 3-phase energy gap approaches its zero-
temperature value as (T/T, ), we get [11]

(4)

Our data at 29.4 and 34.2 bars are plotted as a function
of (T/T, ) in Fig. 1. The 34.2-bar data strongly support
Eq. (4), and the 29.4-bar data are certainly consistent
with a (T/T, ) temperature dependence. The solid
lines are fits to the data of the above form with

v~»s(A)[0] =1.237X10' Hz and C=1.22 at 34.2 bars,
and v~,„s(A)[0]=1.129X IO' Hz and C=1.13 at 29.4
bars. Also shown are results Wolfle [12] compiled for
v~»s(A) at 33.0 bars from B-phase data taking the ratio
of the ABM and BW forms of Eq. (I). As shown by the
open symbols in Fig. I, the magnitudes of his values com-
pare well with ours, supporting the identification of the 8
and 8 phases with the ABM and BW states at high pres-
sures. Wolfle's data show a qualitatively different behav-
ior, however, which we attribute to a possible underes-
timation of gq, the admixture off wave pairing poten-tial-

ly altering the value of a at low temperatures [13],and/or
his assumption that tyt~/tytg = l.

Since both g and 2N(0) are well known [4, 14], we can
use our low-temperature 3-phase results and Eqs. (3)
and (4) to solve for h~o if we know both (R ) in the low-
temperature limit and e„which should be temperature

t

independent. In BCS theory, the ratio a,/T, is a measure
of the strength of the pairing interaction. However, un-

like s-wave BCS states in ordinary superconductors where

e, can be physically equated with the Debye energy,
superfluid He has no obvious energy scale to which e, is

related. This is especially true when s, is used in the
present context of the dipole interaction which could re-

quire a different cutoff from the simple BCS pairing in-

teraction [131. Originally, Leggett [71 estimated s, to be
0.7 K and most early workers [8,9] assumed it to be in-

dependent of pressure. Patton and Zaringhalam [15] de-
rived a form which related e, to T, and the strength of
the pairing interaction through the exponential of a sum

of Landau parameters. Their form is, however, quite sen-

sitive to the higher-order parameters and thus somewhat
unreliable for predicting a, . It has also been suggested
[13] that e, -E,r, the spin fluctuation energy given by

E,r=(1+Zo/4)EF*, where EF is the Fermi energy com-
puted with the effective mass and Zo is a Landau param-
eter. The uncertainty in e, is such that a recent review

[I] placed the bounds on e, to be 0.040(s, (1.0 K. The
other parameter, (R ), is also undetermined and is usual-

ly [1,8,9] taken to be near unity at all pressures. Fomin,
Pethick, and Serene [16] have, however, calculated (R )
to be 1.6 at saturated vapor pressure and 1.7 at melting
pressure.

Although neither (R ) nor e, are well-known quanti-
ties, we will follow previous authors [7-9,12] and assume
that they are the same in both the 8 and 8 phases. The
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error introduced by this assumption could be as much as
—0.1(R ), but a detailed theoretical treatment has not

yet been developed [11]. With this assumption, since the
8-phase gap at T =0 (A~p) is known, we can obtain (R )

as a function of s, by solving Eqs. (I ) and (2) for the 8
phase in the low-temperature limit. The resulting rela-
tion is [4,8]

Y~o„g(8) [0] =2.562[2N(0)http] (R )[In(2s, /8 ttp)1'/gg,

where http is in mK and 21V(0) is in units of 10"
J 'm . Taking zero-temperature limiting values at
34.2 bars of gtt =(0.325+'0.005)gjv [8,17], vi, „g(B)[0]
=(1.01 ~0.02) & IO" Hz [8,18-20] and Attp=(1 08
~0.02) && [1.76keT, ] [21,22], Eq. (5) becomes

(R -') = (27.0 ~ 1.7)/[In(2a, /http) ]

To solve for hpA, we now substitute for (R ) in Eq. (3)
the expression in Eq. (6), obtaining vl, „g(A) [0] as a func-
tion of only In(e, ) and ApA. Then, using our values for

8[vi'...(A ) ]
t)(T/T„)

)'(I+ —,
' Z.) [2W(0)] (R')(k

g'V

v~,„s(A)[0], we can solve numerically tor Ap~ as a func-

tion of c, . We find that ho& is remarkably insensitive to
c„which appears only within the logarithms; a variation
of c, between 0.05 and 1 K changes ho~ by about 1~~(.

Thus the uncertainty in Eq. (6) makes the particular
choice of c, irrelevant to the resultant value of ho~. We
obtain Apg =4.60 ~ 0.30 mK ( = [1.85+ 0.12]T )at . 34.2

bars and, through a parallel calculation, 40~ =4.~0
+'0.24 (=[1.85 ~O. IO]T ) at 29.4 bars. The error bars
are largely due to uncertainties in the 8-phase quantities.
The values are consistent with strong-coupling effects at
high pressures in the 8 phase, which are indicated by a

large enhancement of hC/C~, the ratio of the A-phase
specific-heat jump to the normal-phase specific heat at
I; , over t. he BCS prediction [4]. Further development of
the theory, in particular, an analytic expression for the
measured coefficient (C) of the T" term in the tempera-
ture dependence of vl, „g(A), should place additional lim-

its on AAp and give new information about (R ) [I I l.
In the Ginzburg-Landau regime (close to T, ) Eqs. (I)

and (2) predict vl, „g(A) to be linear in I
—T/T, with the.

slope given by [7,8]

1. 14m,
gT, )' ln

kgT,

Previous measurements of this slope by the Helsinski [8]
and the La Jol]a [23] groups did not agree, which both

groups credit to problems with the temperature scales. A
third measurement [24] with very high precision (due to
an eflective linewidth of 0.5 Hz) was made at melting
pressure and given in terms of the pressure along the
melting curve which is easily converted to the current
temperature scale [4].

To compare our data with these earlier workers, we

must take into account as they [8,23] did that the actual
temperature dependence of vl, „g(A) is not linear except
just below T, . We found, however, that the curvature
was insignificant for T & 0.9T, and pressures below 34.2
bars, We thus took the slope to be the mean of
vl, „g(A)/(I —T/T, ) measured at T )0.9T„with an un-

certainty of 1 standard deviation of the mean. As shown

in Fig. 2, our data agree well with the Helsinski data and

extrapolate to a new measurement [25] at 1.03 bars by
Halperin and co-workers. At 34.2 bars we have shown

the high precision result at melting pressure [24] rather
than our own and used that datum in the analysis belo~.

The quantities on the right-hand side of Eq. (7) have
all been measured [4,9, 14,26] except for ~, and (R ) as
discussed above. From our data we obtain the product
(R )[In(I.14m, /T, )] as a function of pressure. Using
this product, we can then calculate c, for given values of
(R ). In Fig. 3 we plot e, assuming (R ) varies linearly
with molar volume between the two estimates from Ref.
[16]. The error bars reflect the uncertainties in our data
and in the other parameters. If we set (R ) = I for all

pressures, we obtain values of e, which are closer in mag-
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FIG. 2. Slope of vr', „s(A)[T] near T, as a function of pres-

sure from this and other experiments.

!
nitude to F,t, as is also shown in Fig. 3. Despite the
differences between the two sets of values for c„ they
show similar pressure dependence and the magnitudes are
close enough to suggest new limits on the strength of the
superfluid pairing interaction. Furthermore, if we take
the values of s, computed above from the data taken near
T, with (R ) =, I and use them in Eq. (6) to estimate
(R ) at T=O, we get (R )[T=O] =1.11+'0.15 at 34.2

bars and 1.19+0.23 at 29.4 bars. The small changes be-
tween T=T, and T=O are within the uncertainties.
This suggests that (R ) depends only weakly if at all on

temperature, and also supports the assumption that (R )

is the same for the two phases.
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FIG. 3. Derived values of e, and E,f vs pressure, as discussed
in the text.
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In summary, our measurements of the 1-phase longitu-
dinal resonance frequency in the low-temperature limit
and near T, allow us to obtain the T=O energy gap in

the 3 phase. We also evaluate the BCS cutoA'energy for
superfluid He and make the first experimental estimate
of its pressure dependence. A higher-order theoretical
expression for the low-temperature behavior of vI»s(A),
combined with our results, would add greatly to under-

standing the microscopic dynamics of super[]uid He.
Future experiments could study the pressure depen-

dence of h~o and compare it to theoretical predictions
[21]. More extensive measurements, in particular at low

pressures, should also prove valuable toward a deeper
theoretical understanding of e, and (R ).
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