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Phase Separation under a Weak Concentration Gradient
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Phase separation dynamics is studied in a density-matched liquid mixture in the presence of a weak
linear concentration gradient. This novel situation enables nucleation and spinodal decomposition to be
studied simultaneously. We observe at all quench depths (i) a central zone of nearly constant concentra-
tion width where interconnected domains grow linearly with time, surrounded by (ii) a zone of isolated
droplets whose width increases with time, with the droplet growth compatible with a —,

' law. These
findings suggest generalized nucleation as the phase separation process.

PACS numbers: 64.70.Ja, 05.70.Jk, 64.60.—i

In this Letter we report the phase separation dynamics
of a binary liquid mixture under a weak concentration
gradient when it is quenched from a temperature at
which it is homogeneous to a temperature where it is a
two-phase mixture. This is a general process that occurs
in many areas of scientific and technological interest such

as material science and heat and mass transfer [1-3].
The experiment has been carried out near a critical point
where the phase separation behavior can easily be gen-
eralized by the use of scaling functions. We have chosen

the density-matched mixture cyclohexane (C) + deu-

terated cyclohexane (C*)+methanol (M) in order to
maintain the concentration gradient against gravity-
driven convection and to suppress the inIIuence of gravity
during phase separation [4]. The phase separation pro-
cess is expected to proceed [1] through spinodal decompo-
sition (SD) or through nucleation and growth. During

SD spontaneous fluctuations grow and generally give rise

to interconnected domains. For nucleation and growth an

energy barrier exists that prevents the droplets with a ra-

dius smaller than a critical radius R* from growing.
Classical theories predict a sharp limiting boundary
called the spinodal curve between these two separation
processes [21. However, for real systems, Binder [3] pro-

poses a smooth transition zone (spinodal nucleation) be-

tween the two processes at early stages. At late stages,
during coarsening, additional eff'ects like hydrodynamic
flows in percolating clusters are expected to enhance the

growth of the domains for volume fractions exceeding the
percolation limit [5]. Wong and Knobler [6] report this

expected crossover in the growth exponent from t' to t'
(here t is the time elapsed after the quench) as the
volume fraction decreases below 10%.

In the present study the sample is submitted to a weak

concentration gradient over its height. This enables the

phase separation structures to be observed simultaneously

in the unstable and metastable regions for the same
quench depth. Our purpose is to determine the concen-
tration dependence of the phase separation structures and

the growth laws. In a computer simulation study of spi-
nodal decomposition under concentration gradients, Kolb
et al. [7] do not see any specific effect of the gradient.

Although they do not take into account hydrodynamics in

their analysis, we expect a similar insensitivity to the gra-
dient.

The experimental cell is a Helma quartz cell of 2 mm
internal thickness, 10 mm width, and 40 mm length and
forms a part of the pressure line which is thermally stabi-
lized within 1 mK in a water bath. The cell is filled by
the sample CC*M at its critical concentration c, (c,
=0.706 mass fraction of cyclohexane) by displacing mer-
cury. The phase separation is aA'ected by pressure
quenches. A diII'erential pressure BP is applied at a tem-
perature held constant at 5 mK above T, . Our measured
value of dT, /dP =+34 mK/bar agrees with the value in

the literature [8]. The corresponding quench depth is

AT =(dT, /dP)6P. At least up to BP =1 bar the adiabat-
ic heating is found to be negligibly small. The advantage
[9] of the pressure quench over the thermal quench is

that the sample reaches the final temperature almost in-

stantaneously, which is an essential criterion for the study
of any time-dependent behavior.

Concentration gradients are induced as follows. The
homogeneous critical mixture is quenched by ATg below
T„which at equilibrium leads to a concentration diII'er-

ence Acs. After approximately a day the sample shows a

tlat meniscus. It is then heated to 1 degree above T, very

slowly to reduce convection and mixing and is left for 40
h for diff'usion. A smooth concentration gradient devel-

ops over the height z of the sample. This system is then
cooled over a couple of hours in small temperature steps
to 5 mK above T, . It is then quenched by pressure into
the miscibility gap to a temperature T, —h, T where the
equilibrium concentration diAerence is Ac (Fig. 2). An

approximate ratio of Ac/Acs =0.5 is maintained to phase
separate the sample in the region of linear concentration
profile.

The concentration profile over the cell height z is deter-
mined just before the pressure quench by a shadow grid
technique discussed elsewhere [10]. The concentration
diAerence obtained by integrating the concentration pro-
file over z for a given h, Tg agrees with that expected from
the coexistence curve (c &c) within an experimental reso-
lution of 5%. Absolute concentrations corresponding to
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any z are calculated from the parameters of a quadratic
fit for the profile around Ac. Here the concentration at
the height of the meniscus (z ) is assumed to be c,. The
sample is imaged by a charge-coupled-device camera.
Results of five quenches corresponding to h, T =2.4, 4, 12,
25, and 40 mK below T, are presented here. In all the
experiments the concentration gradient hcg/Az is very
weak at the scale of the interface thickness (which is of
the order of the correlation length g) and at the scale of
the domatn size Lyg, +c/( 00'+c/Lyg 00'+cg/+z.

A typical phase separation photograph is shown in Fig.
1. At all quench depths we see a central "fast" zone of
concentration width hcf where phase separation occurs
through interconnected structures and is fast. On either
side of the fast zone we see two "slow" zones of total
width hc, where growth and equilibration are slow and

the phase separation structures are dropletlike. Beyond
the slow zone at the top and bottom of the cell the rest of
the liquid remains homogeneous which is expected since

hcg )Ac. Initially the width Acr is almost independent of
time; within a short time (dependent on quench depth) a
Hat meniscus appears at its center. In contrast hc, in-

creases with time and saturates at approximately the
equilibrium concentration diff'erence Ac. Later, convec-

tion rolls appear, indicating the onset of gravity [I ll.
The slow zone corresponds to nucleation and growth of

droplets. The time dependence of its width can be under-

stood by the Langer-Schwartz (LS) nucleation theory
[12]. For a quench depth hT corresponding to an equi-

librium concentration diff'erence Ac, the supersaturation x
can be estimated as x =bT/hT = (2/p)bc/hc. Here b'T

is the undercooling below the coexistence temperature, Bc
is the excess concentration over the equilibrium concen-
tration (Fig. 2), and p=0.325. The LS theory gives the

nucleation rate dN/dt (rate of formation of critical nu-

cleus per unit volume) as a function of the supersatura-
tion x(t) in the scaled form

J(y) = dn/dt * =AF(y) exp( —1/y)

The variable y =x/xo is the scaled supersaturation
(xo=1.24 for binary liquids) and the reduced number
density is n =64m( N/xo. t*=t/z is the reduced time
with the correlation time z =6nt)g /kaT; g is the shear
viscosity and kq is the Boltzmann constant. The function
F(y) is weakly y dependent at small y and plays a minor
role in the nucleation kinetics. 2 is a constant with a
value close to 3.

Close to the critical point, the growth is affected due to
the critical slowing down. Since in general experimental-
ists cannot separate nucleation from growth [1j, LS intro-
duce the half-completion time t,* at which supersatura-
tion decreases to half of its initial value y~,

i' —(&'/y J')" (2)
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The constant 2' is of order 0.3 and J is evaluated from
Eq. (1) with y yI. This universal behavior predicts a
rather rapid completion of the phase separation at large
yI values, where yI is expected to decrease almost linear-

ly as lnt,*.
In our experiment, the increasing width LLc, of the slow

zone corresponds to the "visibility" of newer nucleations
for concentrations corresponding to lower y I values.
Here yI =(hc —Ac, )/Pxohe. For each yI we can mea-
sure a time at which droplets become visible. We tenta-
tively identify this time as the half-completion time t,
and attempt to compare its behavior with that expected
from LS theory. Note that the difference between the
absolute values of the scaled time as defined by LS and

by us is not very important considering the exponential
behavior of the nucleation rate and the approximate pre-
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FIG. 1. A typical photograph of phase separation under a
concentration gradient. The tilted lines are the grid shadows
used to measure the gradient [10].

FIG. 2. Experimental miscibility gap of CC*M up to 40 mK
below T,. The solid curve is the known coexistence curve,
which corresponds to the final value of the slow zone within 5%
experimental uncertainty (open circles). Here we have normal-
ized these final values to the coexistence curve. The plusses are
the fast zone data and the dashed line is the extrapolated value
of ref (=0.015) at t* = I (see Fig. 3). The various boundaries
correspond to different theoretical limits expected for the ratio
Acf/hc (dash-dotted curve: percolation limit, ref/Ac =0.7, and
dotted curve: random packing limit, hcf/hc =0.3).
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factors of the LS theory.
In Fig. 3 y] is plotted with respect to lnt,*. It is clear

that the data show the expected qualitative behavior with

an almost linear region at small times and saturating to
the equilibrium value zero at large times. These com-

pletion curves show a weak quench depth dependence at
small times. Although it is not expected from scaling ar-

guments, it seems to be consistent with the observations

of the fast zone as we explain below.
The inset of Fig. 3 shows the fast zone width hcf over

two decades of time for all the quenches. One sees that

hcf is nearly independent of time and of the quench depth

within the experimental uncertainty. A linear fit of hfdf

versus time shows a very small negative slope. Its extrap-
olation to (*=I gives Acf =(1.5~0.3)x 10 as the

average value for all the quenches (Fig. 2). Since binary

liquids do not follow mean-field critical behavior within

the present quench depths, it is inappropriate to compare
the fast zone width with the classical spinodal line. In

Fig. 2 the dash-dotted curve is the boundary of
Acf/Ac =0.70 which is the three-dimensional continuum

percolation limit of 15% by volume. A crossover at this

threshold was expected [5] due to flow in percolating
clusters. The fast zone is definitely much smaller than

this percolation limit.
We believe that this finding is in accord with the recent

picture of spinodal decomposition as a generalized nu-

cleation process [3]. In predicting a smooth boundary be-

tween zones of spinodal decomposition and nucleation

and growth, Binder argues that in the unstable region of
the miscibility gap the activation energy hF. for the for-

mation of a critical nucleus R* is AF. *=kqT with
R* = (. In nucleation theories, AF. * is of order ka T/y'
and the critical radius R* is of order 2g/y. One then sees

that the boundary between SD and nucleation and
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I. IG. 3. Initial supersaturation y& plotted against Int,* for all
the quench depths (circles, 2.4 mK; squares, 4 mK; triangles, 12
mK; stars, 25 mK; plusses, 40 mK). The lines are fits to the
linear region. Inset: Concentration width Acf at all the quench
depths vs t*. The dashed line is a fit linear in lnt*. The verti-
cal bar is the estimated error.

growth should correspond to y=2. In Fig. 3 we show

the extrapolation of the linear fits to the completion
curves. For the smaller quenches we find J]=2.4 at
t,* =1, close to the expected value of 2. This implies that
the phase separation at t,* =1 corresponds to nucleation
and growth with fluctuations of length ( acting as critical
nuclei and driving the phase separation process. Thi»
should be the fast zone limit. The accuracy of the present
data is not enough to determine the precise quench depth
dependence of y] at t,*=1. However, its increase with

quench depth suggests the observed constancy of the fast
zone, hc, (r,* =1)=hcf =const. For example, a variation
of y~(t,* =I) from 1.7 to 2.5 as the quench depth in-

creases from 2.4 to 40 mK gives Ac, (r,* = I)=0.015,
which is in fact the average fast zone width. This con-
tinuation of the slow zone nucleation and growth behavior
into the fast zone strongly suggests that generalized nu-

cleation is the phase separation process in the unstable re-
gion.

Although our observations are qualitatively consistent
with a constant hcf as discussed above, we cannot rule
out completely a quench-depth-dependent fast zone cor-
responding to y~ = 2, i.e. , Acf/hc =0.3, as shown in Fig.
2. This corresponds to a volume fraction of 0.35 which is

close to the three-dimensional random packing limit
(0.40). The enhanced coalescence of domains at the
above volume fractions could be the origin of the striking
contrast between the morphologies of the fast and slow
zones (Fig. I). As a matter of fact, the computer simula-
tions by Rogers and Desai [13] also show this same
change of morphology, when dcf/Ac changes from 0. 1 to
0.4.

When considering the kinetics of phase separation, Fig.
1 clearly indicates a gap in the growth rate for near-
critical and ofl'-critical concentrations. In our prelimi-
nary small-angle light scattering experiments, the laser
beam of 0.3 mm width is scanned across the height of the
sample from the instant it is quenched. The ring pattern
is video recorded. In Fig. 4 the average radius K„,
(=2'/I ) at the maximum intensity of the scattering
ring is plotted in units of g (K* =K () versus the re-

duced time t* for h, T=2.4 mk along with the master
curve. The growth exponent 0 is 0=0.8+0.1 for the fast
zone, which corresponds to the effective exponent in this
r* range [4]. The slow zone gives 0=0.38+ 0. 1, whos"
extrapolation to t*= 1 gives K* = 1, as the fast growth
master curve. Although these experiments are rather too
preliminary for accurate quantitative details, the jump in

the exponent value as concentration varies from critical to
oA critical is clearly in contrast with a continuous varia-
tion of 6 from 1 to 3 . The inset in Fig. 4 shows the jump
in the 0 value for the concentration range studied.

Experiments with a concentration gradient therefore
enable phase separation to be observed simultaneously at
different volume fractions and supersaturations. Our
findings are in agreement with generalized nucleation as
the phase separation mechanism. The dependence of the
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FIG. 4. Light scattering data: scaled wave vector K* vs the
reduced time t* for AT=2.4 mK. Circles (triangles) refer to
different heights in the fast (slow) zone. Solid lines are linear
fits. Dashed line is the master curve for c c, (from Ref. [4]).
Inset: Schematic representation to show the jump in the growth
exponent value 8 for the range of concentrations scanned by the
laser beam.

morphology and the growth exponent on volume fraction
is abrupt and leads to a fast growth zone (exponent = 1)
and a slow growth zone (exponent = 3 ). Our data indi-

cate that the fast growth zone boundary is nearly temper-
ature independent. However, we cannot completely ex-
clude a weak temperature dependence corresponding to a
boundary at 0.35 volume fraction. This is close to the 3D
random packing limit where the droplet interconnection
should accelerate the growth.
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