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Self-Similarity in Transient Stimulated Raman Scattering
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Stimulated Raman scattering in the transient limit is an integrable system. In contrast, however, to
the usual behavior in integrable systems, solitons are transient and the behavior of the system at long dis-
tances is dominated by self-similar solutions which may be found by symmetry reduction. It is shown for
fairly general initial conditions precisely which self-similar solution the system tends toward at long dis-
tances, and the system evolution is studied numerically. It is argued that this behavior in which self-
similar solutions dominate the long-distance evolution should often appear in nonlinear optical systems
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with memory. A possible experiment is proposed.

PACS numbers: 42.65.Dr, 02.30.+g, 33.20.Fb

Stimulated Raman scattering in the transient limit in
which pulse durations are short compared to the material
deexcitation time T, (TSRS) has long been the focus of
theoretical [1,2] and experimental [3,4] study. Recent
experiments [4] have observed pump depletion and ampli-
tude oscillation. Second Stokes generation imposed an
upper limit on the length of these experiments, but it has
since been found experimentally that it is possible to use
a multiple pass geometry to suppress this generation [5],
allowing one in principle to observe the TSRS system
over very long lengths, as we shall later discuss. The
equations which describe this system possess a Lax pair,
and, hence, the system is integrable [6]. Yet, the qualita-
tive behavior of this system is quite different from the
“standard” behavior exhibited by integrable systems in
one space and one time dimension, e.g., nonlinear light
pulses in optical fibers, in which an initial pulse breaks up
into some number of solitons and dispersive wave radia-
tion so that solitons dominate the long-distance behavior.
Solitons in stimulated Raman scattering are transient [7],
and the long-distance behavior is dominated by self-
similarity [2].

Both soliton solutions and self-similar solutions can be
found by symmetry reduction. One looks for solutions of
the original equations which, instead of depending on the
space variable x and the time variable ¢ separately, de-
pend on a single variable £ which combines x and ¢. For
example, soliton solutions depend on the combination
E=x—V1, where V is the soliton velocity, while self-
similar solutions depend on the combination xt. Powerful
techniques, based on Lie algebra theory, allow one to
determine the symmetry reductions for a given equation
[8]. It has long been known that self-similar solutions, as
well as soliton solutions, exist for integrable equations [9].
Why then have solitons received widespread attention,
and been experimentally studied in a wide range of con-
texts, while the self-similar solutions are not well known,

and have received little if any experimental attention?
The reason is that in most contexts in which integrable
equations appear, e.g., nonlinear light pulses in optical
fibers, a pulse is introduced into a nonlinear medium, and
the appropriate boundary conditions are that all fields
tend toward zero at t = % oo if the propagation variable is
x. Under these circumstances, solitons will dominate the
behavior at large x.

Important exceptions exist in nonlinear optics, for ex-
ample, three-wave interactions in which two of the waves
are electromagnetic and one is a material excitation.
This material excitation may be very long lived, in which
case it is not appropriate to assume that it goes to zero as
t— +oo. Physically, the key element appears to be
memory—the ability of the medium to retain informa-
tion long after the electromagnetic pulses have passed
through. A number of examples already exist in the
literature indicating that self-similar solutions will dom-
inate the long-distance behavior when the system has
memory. Manakov and co-workers [10] have studied
light propagation in an inverted two-level medium and
have found that a self-similar solution dominates the
asymptotic behavior. An and Sipe [11] have found that
Hill gratings evolve in a self-similar manner. Hilfer and
Menyuk [2] showed numerically that self-similar behav-
ior dominates the asymptotic evolution of stimulated Ra-
man scattering in the transient regime. Recently, Levi,
Menyuk, and Winternitz [12] showed that the self-
similar solution can in general be expressed in terms of a
Painlevé transcendent. If we demand that the solution be
well behaved throughout the time domain, then the Pain-
levé transcendent is Pyj;. This solution was first found by
Elgin and O’Hare [13], and Tran and Haus [14] have re-
cently used this solution to study the statistical properties
of a system which starts from quantum noise. In all three
cases—inverted two-level media, Hill gratings, and
stimulated Raman scattering in gases—there is experi-
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mental evidence cited in Refs. [2,3,10-12] that self-
similarity dominates the long-term behavior. However,
to our knowledge, self-similarity in optics has never been
the subject of a careful experimental study.

In this Letter, we will focus on transient stimulated
Raman scattering. We will give rules which determine
the self-similar solution toward which a system will tend.
These rules have been derived from inverse scattering
theory, but we will present the details of the theory else-
where since the details are complex and not physically il-
luminating [6]. Instead, we will present numerical results
which indicate the correctness of the rules and, as impor-
tantly, give insight into how the self-similar solution is
approached. At the end, we will describe an experiment
which could verify the theoretical predictions. While the
focus is on stimulated Raman scattering, we expect simi-
lar results to hold in other nonlinear optical systems in
which the medium has memory. In addition to the exam-
ples previously given, we note that photorefractive ma-
terials in some cases obey equations identical to those of
stimulated Raman scattering [15].

The equations which describe stimulated Raman scat-
tering may be written after normalization [6,7] as

0A4,/0y=—A,X, 6A281=A.X*, D

0X/dt+yX=A,4F ,
where y and 7 are normalized distance and time, 4, and
A, are normalized pump and Stokes amplitudes, X is pro-
portional to the material excitation, and y is inversely
proportional to T, the material deexcitation time. From
a physical standpoint, 4| and 4, are known as a function
of time at the entry to the Raman cell and one then
determines the subsequent evolution along the cell;
mathematically, this corresponds to assuming that 4,(z)
and A,(z) are known at y =0 and determining 4(y,7)
and A,(y,7) for y> 0. When y=0, a Lax pair exists and
the system is integrable. It is this limit which we will be
considering; it is relevant to experiments in the transient
limit like those of Duncan et al. [4]. The quantity
K*(t)=|A4,(y,7)|*+]A4,(x,7)|? does not change with .
Assuming y =0 and making the transformation

r'=f_mK2(r”)dr"/T°°, 2=xTw, o
2

A1=A/K(1), A3=A,/K(1), X'=X/T,
where To=JZ0K2(z")dt", we find that the primed
variables satisfy an equation identical to Eq. (1) but in
which |A4{]|2+|A4%|2=1 in the interval 0<7 <1 and is
zero elsewhere. We may thus assume with no loss of gen-
erality that our problem has this form. Physically, the
new time variable corresponds to integrated intensity.
We may similarly assume that A, is real for all 7 at
x =0, while A4, is real at y =0, tr =0, since transforma-
tions which rotate these complex angles do not change

Eq. (1).

If we let B(£)=A,, B2(£)=A, and Y(&)=yX,
where £ =y is the similarity variable, then we obtain the

ordinary differential equations [12,13]
dB,/dé=—(1/E)B,Y, dB,/dé=(1/€)B,Y*,

dY/dé=B\B5 .
These equations have nonsingular solutions which corre-
spond to choosing the Stokes amplitude so that it is ini-
tially proportional to the pump amplitude. In these solu-
tions, the phases of B, and B, are constant, corresponding
to zero frequency mismatch between the pump and the
Stokes beams. While Levi, Menyuk, and Winternitz [12]
have found a more general set of self-similar solutions
with nonzero frequency mismatches, one can show that if
the initial pump and Stokes beams have no frequency
mismatch, the most important case experimentally [4],
then the system will always tend at long distances to one
of the nonsingular solutions of Eq. (3). Thus, we will
focus on these solutions. Their qualitative behavior is the
same as has been observed numerically for a wide range
of initial conditions in which the Stokes amplitude is ini-
tially small compared to the pump amplitude [2]. This
evolution passes through three regimes: an / regime in
which the Stokes amplitude grows exponentially while the
pump remains nearly constant, a fully nonlinear transi-
tion regime, and a J regime in which the pump amplitude
decays as 5_1/4 while undergoing a number of temporal
oscillations proportional to &2,

Writing B =coslB;(£)/2] and B;=sinlB,(&)/2], the
self-similar solutions are parametrized by Bs0=p;(£=0).

3)

. They are also parametrized by an offset yof. Since Eq.

(1) is not changed by replacing y with y+ yox, we could
use as our similarity variable &é=(y+y,qx)z. We may
write the pump and Stokes waves in the form

{4,(y,7) =coslB(y,7)/2) expli6; (,7)],

A>(x, 1) =sinlB(y, t) /2] explifr(x, 7)1},

where 6,(y=0,7)=0 and 6,(y=0,7=0)=0. Letting
Po=P(x=0,7=0) and By=9B/d7 evaluated at y=0,
7 =0, the rules which govern the self-similar solution to-
ward which the system tends are as follows:

Bso=Po, xor =Po/(sinPo) . 4)

The behavior at large y is completely dominated by the
initial profile near 7 =0.

A justification of these rules based on inverse scattering
theory will be given elsewhere. In this Letter, we confine
ourselves to presenting numerical results which indicate
the correctness of these rules and, just as importantly,
yield insights into how the system approaches a self-
similar solution. We recall that if B(y=0,7)=const,
then the self-similar solution which is obtained by setting
Bso=PBo and xor =0 exactly describes the evolution of Eq.
(1) with y=0. In Fig. 1, we compare the solution of Eq.
(1) as a function of ¢ when y =800 to the solution of Eq.
(3) up to £=800 when By(y=0,7) =B;0=0.2. The solu-
tion to Eq. (1) is designated the TSRS (transient stimu-
lated Raman scattering equation) solution, while the
solution to Eq. (3) is designated the self-similar solution.
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FIG. 1. The TSRS solution with B(y =0,7) =B0=0.2 is com-

pared to the self-similar solution with B;0=0.2. They are iden-
tical.

As expected, the two solutions are identical. In Figs. 2
and 3, we show the evolution when (¥ =0,7)=0.2+2nrr
and B(y=0,7) =0.2 —2rt, respectively, corresponding to
Bs0=0.2 and yxox= *32. In Fig. 2, we find that the
TSRS solution compares quite well to the self-similar
solution when the offset is taken into account and, indeed,
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FIG. 2. The TSRS solution with B(y=0,7)=0.2+2x7 is
compared to the self-similar solution with B,0=0.2, yox=32.
Agreement is good.
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FIG. 3. The TSRS solution with B(y==0,7)=0.2+2x7 is
compared to the self-similar solution with B;0=0.2, yor = —32.
A soliton is generated at the initial zero crossing. Agreement is
good at times preceding the soliton.

detailed study of the evolution shows that the discrepan-
cies are slight once y2200. By contrast, a large dis-
crepancy can be seen in Fig. 3. A soliton was generated
at the point 79=0.1/x, where there was a zero crossing in
the initial Stokes data, and, as y increases, the soliton
propagates to the back of the pulse and at y = 1000, it
disappears. Nonetheless, when y = 200, the TSRS solu-
tion resembles the self-similar solution at times which
precede the soliton location, and, once the soliton has
disappeared, agreement is excellent at all times. In Fig.
4, we show the solutions of Eq. (1), letting B(y=0,
7)=pB50=0.2 and 6,(y=0,7)=10x7. The initial phase
wave rapidly disappears, and at the point y =200 solitons
with phase shifts less than 7 have appeared. These prop-
agate toward the back of the pulse at large 7 and have
for the most part disappeared at the point y =800. Excel-
lent agreement was found between the TSRS solution
shown in Fig. 4 at y =800 and the self-similar solution,
although there are some discrepancies near 7 =1 due to a
soliton. In summary, we found that after a period of
transient behavior in which phase waves rapidly disap-
pear and solitons eventually disappear, every TSRS solu-
tion which we examined tends toward a self-similar solu-
tion whose parameters are determined by the initial fields
in the neighborhood of r =0 in accordance with Eq. (4).
To experimentally observe the predicted behavior in
gases such as H,, one must generate initial pump and
Stokes profiles which are short compared to 7,. Duncan
et al. [4] describe a method for obtaining 40-ps pump and
Stokes pulses while 73 in Hj is typically ~ 1 ns. In this
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FIG. 4. The TSRS solution with B(y=0,7)=p80=0.2,
0:(x=0,7) =10nt. Solitons with phase changes less than & are
visible near 7 =0.3 and 0.7 at y =200, as verified by their
motion toward larger times as y increases. The soliton near
7 =0.3 propagates near to 7 =0.9 at y=800. Comparison to
the self-similar solution in Fig. 1 shows that the agreement is
good at times preceding the soliton.

experiment, self-similar oscillations were visible. To go
the long length required to carry out a careful compar-
ison of theory and experiment without obtaining second
Stokes generation, one can use a multipass configuration
like that described by MacPherson, Swanson, and
Carlsten [5] which filters out the second Stokes radiation
on each pass. A linear intensity gain of 30 is needed to
obtain first Stokes radiation seeded from quantum noise
when only the pump is present [4], and a similar intensity
gain will lead to second Stokes radiation when sizable
pump and first Stokes waves are present. This gain corre-
sponds to y~50. Since y~500 is required to carry out
careful measurements, 10 to 20 passes through the Ra-
man amplifier are required, filtering out the second
Stokes radiation on each pass. This choice will ensure
that the growth of the second Stokes radiation is sup-
pressed. Of course, it may be preferable to use a com-
pletely different medium, perhaps a photorefractive ma-
terial, in which the second Stokes radiation is not phase
matched.

In conclusion, we have shown that in the transient lim-
it, under rather general conditions, the system of equa-
tions which describe stimulated Raman scattering tend
toward a self-similar solution which is expressed in terms
of P, the third Painlevé transcendent. The self-similar
solution toward which the system tends is entirely deter-
mined by the initial data at early times. We argue that

this behavior will often appear in integrable, nonlinear
optical systems with memory. We have numerically
solved the original system of equations which describe
stimulated Raman scattering and compared the results to
the self-similar solutions, both to verify that the system
always tends toward one of these solutions and to exhibit
the transient soliton solutions which can appear in the
early evolution. Finally, we have outlined an experiment
which can be performed to study the phenomena which
we have described.
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