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Time Reversal in Stochastic Processes and the Dirac Equation
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We consider the motion of a classical particle in (1+1)-dimensional space-time. Four probability dis-
tributions govern the trajectory of the particle; these give the probability of moving to the left or right in

space while moving backwards or forwards in time. If these probabilities are randomly distributed and if
the probability of moving backwards in time is related to the probability of moving forwards in time in a
prescribed manner, then the master equations for these probabilities give rise to the Dirac equation
without recourse to direct analytic continuation. In contrast, when a particle always moves forward in
time, an analytic continuation is required to recover the Dirac equation.

PACS numbers: 03.65.Ca

Gaveau et al. [lj have considered the random motion
of a particle in (1+1)-dimensional space-time. The tra-
jectory of the particle is always forward in time and con-
sists of a sequence of reversals in spatial motion. The
probability of such a reversal in time At is aAt, so that
the master equation governing the particle's motion is

P~(x, t+At) -(1—aAt)P+ (x T Ax, t)

+aAtP ~ (x ~ Ax, t ) .

evident that (1) generalizes to

F+ (x, t) = (I —aLAt attAt)F ~—(x T- Ax, t At)—

+aL,ttAtB~(x+ Ax, t+At)

+att t, AtF ~ (x ~ Ax, t At ) . —
We now impose the condition that

F~(x,t) 8 (~~xAx, t+At) .

By (3), (2) implies that

(2)

(3)

Here P ~ (x, t ) is the probability of a particle being at
(x, t), moving either to the right (+) or left ( —). It is
shown in [IJ how in the limit Ax, At 0 (with Ax/At

finite) the Dirac equation can be recovered provided a
is continued to an imaginary value [or, equivalently,
(t,At ) is continued to (it, iAt )]

We extend these considerations to the case where the
classical particle can move both backwards and forwards
in time. There are now four probability distributions:
F~ (x, t ) and 8~ (x, t ), where 8 and F refer to "back-
wards" and "forwards" in time. It is also possible to dis-
tinguish between the probability of turning "left" (at.At)
and "right" (attAt) in space-time in time At. It is now

8+(x+ Ax, t+At) - (1 at.At —a—ttAt)8+ (x,t)

+at. ttAtB~ (x, t)

+att LAtF~(x, t).
We note that (4) is not obtained from (2) by merely per-
forming a "rotation" in the x-t plane; that would lead to

(4)

8+ (x,t) - (1 —at.At —attAt)B+ (x+ Ax, t+At)

+at. ttAtB~ (x+ Ax, t+At)

+att LAtF (x TAx, t At) . —

Iteration of (1) leads to an interpretation in terms of a
"random walk"; we see that

P~(x, t) -(1 aAt)P~(x Ax, t A—t)—+aAt—P (x+Ax, t —At)—

(1 —aAt ) [(1 aAt )P+ (x —2Ax, t —2At ) +aAtP (x, t —2At —)j-
+aAtl(1 aAt)P (x+2Ax—, t 2At)+aAtPi(x—, t —2At)I

(6)
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+att L( F~+F—~),
aB- aB-

+ v + =aL,tt( 8+. +F+)—
x t

+att L( 8~+8+) . —

(8a)

(8b)

If A ~ =exp[(at. +att)t](F ~ —8+ ), then (8) becomes

83+ 83+
v + =XW — (X= —aL+att) .

tlx IJt

The equation

(9)

This can be continued n times, until finally P+(x, t) can
be expressed in terms of P~ evaluated at t —nh, t. %'e
assume that at that time the particle's state is known
[e.g. , P+(x+khx, t n—IJt) =1 and P ~ =0 at time
t —nest otherwise]. It is evident that (6) implies

P+(x, t) = g (1 a—at)" n(ant)n,
paths

where we sum over all paths from (x+kAx, t —nest) to
(x, t) beginning and ending by moving to the right, and
always in the direction of increasing time. The number
of turns in each path is R. If aIst =is and (1 an't—) =1,
then (7) reduces to the random walk for the amplitude p
described in [2].

Iteration of (2) and (4) is not nearly so straightfor-
ward; however, it is easily seen that F+ (x, t),8~(x, t)
depend only on probabilities that lie in the past. This
consistency with causality does not follow from (2) and
(5). In this sense the condition of (3) is "causal. "

In the limit d,x,d, t 0 with hx =vs.t, (2) and (4) yield

8F+ IJF+~ v + =at. tt( F~+8~)—
rlx Bt

ponentially growing or decaying solutions. We therefore
exclude (10). Physically, this is reasonable since an ob-
server moving forward in time wou1d interpret the proba-
bilities 8+ as being associated with the trajectories of
antiparticles, and the diAerence F + —8 + is naturally in-
terpreted with the net flux of particles moving forward in

time. (This is a form of "charge conservation. ")
Upon setting v =c, A, =mc /It, and y = (A+, A —), (9)

can be written as

|1I/I
l 6 =7Plc cd y —ich o,

This is the Dirac equation in (1+1)-dimensional Min-
kowski space; the corresponding Weyl equation (i.e., the
m 0 limit) arises if A. = —aL+att is zero. No direct
analytic continuation of X, is required in this derivation.
This is possible as there is in two dimensions a represen-
tation of the Dirac matrices in 1+1 dimensions in which
the free wave function is real; the wave function does not
remain real in this representation if there is an external
vector potential.

We thus see that the random motion of a particle in

(1+1)-dimensional space directly leads to the Dirac
equation provided motion backwards in time is incor-
porated using (3). It is essential to have both probabili-
ties F + and 8+ to get to this result. A similar con-
clusion has been obtained using the transfer matrix ap-
proach [3].

We hope to extend this discussion beyond 1+ 1 dimen-
sion using the techniques of [Il.
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az- az-
|lx IJt

~v + —=pz- (p—=aL+att) (10)

results if we were to consider z ~ =exp[(aL+att)t]
x (F+ +8 ~ ).

We note that (10) is essentially the same as (9), except
that the roles of x and t are reversed. Consequently, if we

square (10), the Klein-Gordon equation results except
that the mass term has the wrong sign, leading to ex-

[1] B. Gaveau, T. Jacobson, M. Kac, and L. S. Schulman,
Phys. Rev. Lett. 53, 419 (1984).

[2] R. P. Feynman and A. R. Hibbs, Quantum Mechanics
and Path Integrals (McGraw-Hill, New York, 1965), p.
35.

[31 G. N. Ord, Int. J. Theor. Phys. (to be published).


