
VOLUM E 69, NUM BER 20 PH YSICAL REVIEW LETTERS 16 NOVEMBER 1992

Parity Breaking and Solitary Waves in Axisymmetric Taylor Vortex Flow
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We report, for the first time, the experimental observation of solitary waves in an axisymmetric
Taylor-Couette flow. The solitary waves result from a parity-breaking bifurcation which occurs near the
onset of Eckhaus instability for Taylor vortex flow in a wide-gap, counterrotating system (radius ratio
g =0.5 and speed ratio tt = —0.2). Our results agree quantitatively with a recent theoretical calculation
by Riecke and Paap.

PACS numbers: 47.20.Ky, 47.20.Ft, 47.35.+i

Parity-breaking bifurcations, which lead to propagative
spatiotemporal dynamics, have been found recently in

several nonlinear pattern-forming systems that involve in-

terfacial instabilities. For instance, a parity-breaking bi-
furcation occurs in directional solidification of liquid crys-
tal [1] and in the viscous fingering of a liquid film be-
tween moving surfaces [2]. In both of these systems, the
parity-breaking bifurcation leads to solitary waves which
travel through an otherwise spatially periodic and station-
ary interface. Theoretical calculations indicate that the
parity-breaking bifurcations arise due to resonant interac-
tion of spatial modes (with wave numbers q and 2q)
[3-7]. Riecke and Paap (RP) have conjectured that res-
onant interaction of spatial modes should generate a
parity-breaking bifurcation leading to rich dynamics in a
wide range of pattern-forming systems, if their sym-
metries allow mode interaction, not just in interfacial sys-
tems [8].

RP investigated this conjecture theoretically by study-
ing Taylor-Couette flow, the flow of fluid between con-
centric rotating cylinders [9]. They chose this classical
pattern-forming system since it is known that the q-2q
resonant mode interaction plays an active role in the dy-
namics of the system by deforming the Eckhaus stable
band of wave numbers for stationary Taylor vortices, if
the gap between the cylinders is wide [10-12]. More-
over, starting from the basic equations of motion, linear
stability analysis of Taylor-Couette flow allows detailed
quantitative calculations of bifurcation boundaries. Such
calculations do not yet exist for the directional solid-
ification or viscous fingering systems. RP performed a
linear stability analysis on axisymmetric Taylor vortex
flow (TVF) and found that a parity-breaking bifurcation,
which results from the q-2q resonant mode interaction
and is not preempted by the Eckhaus instability, does
indeed occur for flow between counterrotating cylinders
in a wide-gap system [8]. RP also modeled the nonlinear
evolution of the parity-breaking mode and found that
their model allows for a localized inclusion of drift waves,
similar to the solitary waves previously observed in sys-
tems involving interfacial instabilities.

In this Letter, we present experimental evidence which
agrees quantitatively with the prediction that a parity-
breaking bifurcation occurs in axisymmetric TVF. We
report for the first time, to our knowledge, the experimen-

tal observation of propagating solitary waves in an ax-
isymmetric Taylor-Couette flow. These solitary waves

are spatially localized deformations of vortex pairs which

propagate through a stationary background of Taylor
vortices. They exist in the region of parameter space for
which RP's model allows for localization of the parity-
breaking mode. We also discuss some of the dynamics of
the solitary waves and the protocol which we use to excite
this localized mode. Our experiment verifies the ex-
istence of propagative parity-breaking dynamics in a
noninterfacial pattern-forming system, which results from
the resonant interaction of spatial modes.

The experiment was performed in a Taylor-Couette ap-
paratus with an inner-to-outer-cylinder radius ratio of
ri =a/b =0.50, which tnatches the value of ri used in the
theoretical analysis (outer-cylinder radius b =2.54 cm).
Delrin plastic end caps formed the end boundaries of the
annulus. The position of one end cap was adjustable so
that the length of the annulus could be varied. We varied
the length L between 18.3 and 20. 1 cm so that the
length-to-gap aspect ratio I =L/d ranged from 14.4 to
15.8 (d=b —a). The cylinders were driven by compu-
ter-controlled stepping motors with a resolution of 0.002
Hz or better. The fluid was 65% glycerin (by volume),
32% distilled water, 2% Kalliroscope rheoscopic agent for
flow visualization, and 1% bacterial stabilizer [13]. For
data acquisition, we used a frame grabber computer card
and a 512 by 484 pixel charge-coupled-device (CCD)
video camera. The frame grabber is capable of grabbing
individual frames, or subsets of frames such as a row of
pixels, for storage and analysis. We were able to record
patterns in the fluid flow by storing video images of
reflected light from the rheoscopic agent, which consists
of highly reflective micron-sized platelets which respond
to shear, thereby allowing patterns to be visualized. The
inner- and outer-cylinder angular velocities co~ and e2 are
scaled in terms of the inner-cylinder Reynolds number
R =ato~d/v and the speed ratio p =to2/to~, where v is the
kinematic viscosity of the fluid. To compare with theoret-
ical calculations, our results are reported in terms of the
reduced Reynolds number e=(R —R, )/R„where R, is
the critical Reynolds number for the onset of axisym-
metric TVF.

In RP's linear stability analysis of axisymmetric TVF
they found that for fixed outer cylinder, i.e., p =0, the
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parity-breaking bifurcation exists for g=0.5, but it is

preempted by an Eckhaus instability in which the station-
ary vortices become unstable with respect to long-
wavelength perturbations. (This instability leads to a ca-
tastrophic creation of a vortex pair, i.e., a phase slip, so
that the axial v ave number q of the stationary pattern of
vortex pairs is readjusted to lie within the Eckhaus stable
band. ) However, RP found that for a system with

p = —0.2 (the negative sign indicates counterrotating
cylinders) there is a range of wave numbers for which the
parity-breaking bifurcation precedes the Eckhaus insta-
bility and should therefore be accessible experimentally.
The parity-breaking mode which grows in at the onset of
instability breaks the reAection symmetry of the vortex
pairs and leads to (possibly localized) axial drift waves
[8l.

Using coupled nonlinear amplitude-phase equations to
model the evolution of the parity-breaking mode, RP
showed that there are stable solutions for the growth of
the mode for which the wave number q is inhomogeneous.
In parts of the system q &qpq, i.e., the static pattern is

unstable, whereas in other parts q & qp&, where qpB
(which depends on e) is the critical wave number for the
onset of the parity-breaking bifurcation. The inhomo-

geneity in q can lead to an inclusion of drift waves, which
is localized where q & qpq and travels through the steady
pattern with a group velocity which differs from the
phase velocity of the waves [8]. Figure 1 is a diagram of
the experimental protocol which we devised to excite a
stable localized inclusion. The solid curve, which is based
on RP's results in Ref. [10l, indicates the Eckhaus stable
band for axisymmetric TVF with g =0.5 and p =0. The
dashed curve, which is based on RP's results in Ref. [8],
is the bifurcation boundary with q=0.5 and p = —0.2.
The lower end is the boundary for Eckhaus instability,
the middle region is the boundary for the parity-breaking
bifurcation, and the upper end is the boundary for a re-
lated Hopf bifurcation [8]. (There will be discussion
below on the details of this bifurcation boundary. ) As
can be seen from the figure, counterrotation strongly de-
forms the bifurcation boundary, which is already some-
what deformed on the low-q side with the outer cylinder

fixed. Both eAects are due to resonant interaction of spa-
tial modes with wave numbers q and 2q [8,10,12]. The
neutral stability curves of the two modes cross, which
creates an overlapping region above a=0. 1 where both
modes are unstable, thereby deforming the bifurcation
boundary. In step 1 of our protocol c is increased quasi-
statically with the outer cylinder fixed, i.e., p =0, to a re-

gion near where the onset of the parity-breaking bifurca-
tion would take place, if the cylinders were counterrotat-
ing with p = —0.2. In step 2 we adjust the end cap of the
annulus so that locally the wave number of the vortex
pair nearest the end cap would be less than qpq, if
p = —0.2. At this point the pattern is still stationary and
the wave number for the vortex pairs throughout the sys-
tem is inhomogeneous. The Ekman vortex at the very
end of the annulus is also stretched by adjusting the end
cap. In step 3, prior to diffusion of the change in wave

number of the end vortex pair through the system, we

rapidly spin-up the outer cylinder from a value of p =0 to

p = —0.2. This last step causes the wave number of the
vortex pair nearest the end cap to become unstable, while

globally the wave number of the other vortex pairs in the
system remains stable. %e observe the onset of a local-
ized, temporal disturbance of the unstable vortex pair
which then drifts axially through the stationary pattern
as a solitary wave.

Figure 2 is a position-time diagram in which successive
time frames of a row of pixels, representing the intensity
of light along the axial position z of the annulus, are plot-
ted. The diagram shows a disturbance localized to one or
two vortex pairs traveling through the otherwise undis-
turbed vortex pairs. This solitary wave reflects off the
end caps of the annulus and travels back through the sys-
tem. The stationary pattern shifts in the direction oppo-
site to the direction of travel of the solitary wave, and
shifts back to its original position when the wave travels
back through the system. Sometimes the solitary wave
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FIG. 1. Schematic diagram of the protocol used to excite
stable solitary waves. See text for details.
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FIG. 2. Position-time plot of the solitary wave traveling
through axisymmetric vortex pairs and reflecting off the end

caps. The plot is for a=0.85 and q =3.47, where q is the wave

number for the undisturbed vortex pairs. The entire length of
the system, with I =14.8, is shown.
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acted as a long-lived transient eventually leading to a

phase slip after approximately 100', where r =d /v= 1 1

s is the viscous diffusion time for our system. However,
the solitary wave typically appeared to be a stable flow

regime lasting more than 1000m. In Fig. 3 we plot a sin-

gle cycle of the solitary wave traveling from one vortex
pair to the next. We smoothed the data with a smoothing
function to eliminate high-wave-number noise due to
small fluctuations in the rheoscopic agent [14]. Only part
of the system, about four vortex pairs, is shown. Typical-
ly, the entire system contained seven vortex pairs and two
Ekman vortices, one at each end cap. At t =0 s in Fig. 3

the solitary wave is primarily confined to one vortex pair,
in the center of the plot, with the pair stretched asymme-
trically. This is consistent with the disturbance resulting
from a parity-breaking bifurcation which locally breaks
reflection symmetry in a region in which q &qpg. At
r =1 s the disturbance has stretched to encompass two

vortex pairs. This is similar to stretching which precedes
the creation of a new vortex pair in the Eckhaus instabili-

ty. Instead, the solitary wave moves along to the next
vortex pair as can be seen at t =2.5 s. The solitary waves

we observed are remarkably similar to solitary waves

which have been observed in an experiment on a moving
nematic-isotropic liquid-crystal interface (compare Fig. 3
to Fig. 1 in Ref. [1]). The solitary waves in the direction-
al solidification experiment also result from a parity-
breaking bifurcation which occurs close to an Eckhaus in-

stability [1,3-5]. There is also a striking similarity be-
tween the solitary waves which we excited and localized
inclusions which form in a model, introduced by Coullet,
goldstein, and Gunaratne, for a parity-breaking bifurca-
tion of a periodic pattern (compare Fig. 3 to Fig. I in

Ref. [4]).
The solid and dashed curves in Fig. 4, which are calcu-

lated by RP from the basic equations of motion using
linear stability analysis, are a more detailed version of
the theoretical bifurcation boundary, for g=0.5 and p= —0.2, shown in Fig. 1 [15]. Below the dash-dotted

line at @=0.3, the solid curve is the bifurcation boundary
for an Eckhaus instability. Above, it is the boundary for
a parity-breaking bifurcation. The dashed curve is the
boundary for a Hopf bifurcation. Above the dash-dotted
line at a=0.84, there is a critical crossing and the Hopf
bifurcation should preempt the parity-breaking bifurca-
tion. RP suggested that the Hopf bifurcation would lead
to an "optical" oscillation mode involving adjacent vortex
pairs in a standing-wave pattern [81. In order to locate
the parity-breaking and Hopf bifurcations experimental-

ly, we adjusted the axial wave number q (with e just
above the onset of TVF) by adjusting the end cap of the
annulus and allowing the wavelength of the vortex pairs
to equilibrate throughout the system. Then e was in-

creased quasistatically while p = —0.2 was kept constant.
The circles in Fig. 4 show where we found the onset of in-

stability for TVF. Typically, at onset several solitary
waves (the same in appearance as the single solitary wave

in Figs. 2 and 3) would begin propagating through the

system, often in opposite directions. This flow was tran-
sient. Within a short time (typically 10'), usually when

two disturbances collided, one or more new vortex pairs
would be created and the entire system would return to a
stationary state within the TVF stable region. This tran-
sient instability is consistent with the predictions of RP
for the parity-breaking bifurcation. Their analysis
showed that, exact';y at onset, the parity-breaking bifur-
cation induces drift waves, which can propagate axially in

either direction due to reflection symmetry prior to onset
and are usually unstable with respect to sideband instabil-
ities. This leads to a phase slip after a transient regime of
drift waves, which takes the pattern back to an Eckhaus
stable regime, as we observed experimentally. At no time
did we observe the oscillation mode associated with the
Hopf bifurcation [16]. However, RP's linear stability
analysis did not allow any prediction as to the stability of
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FIG. 3. Solitary wave propagating to the left with a=0.95
and q =3.57. The sequence shows a single cycle of the solitary
wave traveling between vortex pairs.

FIG. 4. Stability diagram for axisymmetric TVF. Circles in-
dicate onset of transient flow leading to a phase slip. Squares
indicate where stable solitary waves were excited. These latter
data are plotted in terms of q & qpg, i.e., the wave number of
the undisturbed vortex pairs. The dashed and solid curves are
the theoretical boundaries for Hopf and parity-breaking bifur-
cations.
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the oscillation mode. If the Hopf bifurcation is unstable
at onset, it is not surprising that we observed the same
transient instability in this region as we observed in the
region for the parity-breaking bifurcation, since the
theoretical bifurcation boundaries lie so close together.
For example, RP found that at c= 1.02 the Hopf bifurca-
tion occurs at q =3.529 and the parity-breaking bifurca-
tion occurs at q =3.524. The data represented by the cir-
cles are the first experimental measurements, to our
knowledge, of these instabilities for axisymmetric TVF at
g=0.5 and p = —0.2 and show good quantitative agree-
ment with the theoretical bifurcation lines.

The squares in Fig. 4 represent points in parameter
space where we excited stable solitary waves. The data
are plotted using the global wave number q & qpB of the
undisturbed vortex pairs, i.e., the wave number of the
vortex pairs after step 2 in our protocol to excite a soli-

tary wave. This wave number did not change for the un-

disturbed vortex pairs after a solitary wave was excited.
%e were unable to make an accurate measurement of the
local wave number q & qpg of a disturbed vortex pair, as
it is difticult to determine the boundary of a solitary wave

during the stretching of vortex pairs and traveling of the
disturbance. As shown in Fig. 4, the globally stable wave

number q & qpp lies close to the theoretical line for the

parity-breaking bifurcation, but in the TVF stable region
as expected. Again it is not surprising that we observed
behavior associated with the parity-breaking bifurcation
in the region where it is slightly preceded by the Hopf bi-

furcation. It might be that the Hopf bifurcation leads to
an unstable pattern (as mentioned above) or that creating
an inhomogeneous wave number in the system breaks the

symmetry necessary for a stable oscillation mode.
In conclusion, we have found strong experimental evi-

dence that a parity-breaking bifurcation exists for TVF at
g=0.5 and p = —0.2, in agreement with the theoretical
analysis of RP. The parity-breaking bifurcation can lead

to a solitary wave which is either stable or a long-lived

transient and travels axially through the stationary back-

ground pattern. The experiment verifies RP's conjecture
that resonant interaction of spatial modes can generate a

parity-breaking bifurcation leading to propagative dy-

namics in a noninterfacial pattern-forming system.
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