PHYSICAL REVIEW
LETTERS

VOLUME 69

16 NOVEMBER 1992

NUMBER 20

Communication via One- and Two-Particle Operators on Einstein-Podolsky-Rosen States

Charles H. Bennett
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598

Stephen J. Wiesner

74 Parkman Street, Brookline, Massachusetts 02146
(Received 16 June 1992)

As is well known, operations on one particle of an Einstein-Podolsky-Rosen (EPR) pair cannot
influence the marginal statistics of measurements on the other particle. We characterize the set of states
accessible from an initial EPR state by one-particle operations and show that in a sense they allow two
bits to be encoded reliably in one spin- 3 particle: One party, “Alice,” prepares an EPR pair and sends
one of the particles to another party, “Bob,” who applies one of four unitary operators to the particle,
and then returns it to Alice. By measuring the two particles jointly, Alice can now reliably learn which

operator Bob used.

PACS numbers: 03.65.Bz, 42.50.Dv, 89.70.+c

It is well known that while remote measurements on
the two separated particles of an Einstein-Podolsky-
Rosen (EPR) [1] pair, such as the singlet state of two
spin- 3 particles,

V123t D =111, (1

can be used to establish nonlocal correlations over a
spacelike interval, these correlations cannot be used for
superluminal communication. In particular, no manipu-
lation of one member of an EPR pair can influence the
marginal statistics of measurements on the other mem-
ber, for example, causing it to have a nonzero expectation
of some spin component. Here we consider an arbitrary
manipulation of one EPR particle, which can be modeled
in full generality as a unitary interaction of that particle
with an outside system or ‘“ancilla,” initially in a pure
state. We show that such interactions can be used to
prepare all and only those states of the joint system (two
particles and ancilla) that yield unperturbed marginal
statistics for all measurements on the other particle, with
which the ancilla did not interact. By choosing an ap-
propriate ancilla, and projecting it out at the end, one can
thus prepare any pure or mixed state of the two EPR par-
ticles having unperturbed marginal statistics for the un-
treated particle.
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Specializing to the case without ancilla, the interaction
can be viewed simply as a preparation of the two particles
by a unitary operation on only one of them, and the set of
states that can be prepared comprises all and only those
two-particle pure states having unperturbed marginal
statistics for measurements on the untreated particle (in
the case of two-particle pure states, this also implies un-
perturbed marginal statistics for the treated particle).
We point out that the set of two-particle states prepar-
able by one-particle operators is a proper subset, but not
a subspace, of the full four-dimensional Hilbert space of
the two particles. Nevertheless, it includes four mutually
orthonormal states, a fact which can be exploited to ac-
complish the seemingly paradoxical feat of transmitting
two bits reliably via a single spin-3 particle. As indicat-
ed above, this is done with the help of a second particle,
the EPR twin of the first particle, which never leaves the
hands of the intended receiver of the message.

We now demonstrate the equivalence between states
accessible through one-particle operators and states with
random marginal statistics for the untreated particle.

A general expression for a pure state of the tripartite
system comprising the two EPR particles and the ancilla
is

[oy=|t1HD+I DB+t DI+ DD, )

2881



VOLUME 69, NUMBER 20

PHYSICAL REVIEW LETTERS

16 NOVEMBER 1992

where [11), |1 1), [11), and || 1) are a complete orthonor-
mal set of spin states for the two particles, and |4), |B),
|C), and | D) are four unnormalized states of the ancilla,
not necessarily orthogonal, and obey only the joint nor-
malization constraint

(AlA)+(B|B)+(C|C)+(D|D)=1. (3)

The full space of such states could be accessed, for exam-
ple, by allowing the ancilla, in a normalized standard ini-
tial state |D), to interact simultaneously with both parti-
cles, initially in the EPR state V1/2(|1]) =] 1)).

We shall now show that interactions of the ancilla with
only one of the EPR particles (say the first) can prepare
all states |®) having random marginal statistics for mea-
surements on the other particle. The interaction of an
ancilla in initial state |I) with the first EPR particle can
be described by a unitary operator U in the smaller prod-
uct Hilbert space of the ancilla and the first particle. By
unitarity of U, the two states

vt =InIn+1lb,
uniin=DIn+m|

are orthonormal. Here |J), |K), |L), and |M) are (un-
normalized) states of the ancilla after the interaction.
The orthonormality of the two states of Eq. (4) is
equivalent to the constraints

JIL)+<(K|M)=0,

(4)

(s5)
JID+HKIKY=(L|L)=(M|M)=1.

Applying the appropriate extension of U to the larger sys-
tem comprising the ancilla in initial state |/) and the two
particles in an initial EPR state, V1/2(Jt1|)—|l1)),
yields the state

&) =V12(= [t DIL+ DI+ DID =D M) .
(6)

This can be seen to be of the same form as Eq. (2) but
with the constraints

(4]4)+(D|DY=(B|B)+(C|C)= % (7
and

(4lC)+<D|B)=0. (®)
We now show that these constraints, sufficient for a state
|®) to be produced by manipulation of the first particle
only, are already implied by the requirement of correct
marginal statistics for measurements of the second
particle’s spin along the z, x, and y axes, respectively.

Correct marginal statistics for the second particle’s z spin
component imply that the two orthogonal vectors

LOID+IDID, IBD+]|OTD

each have magnitude V1/2, in turn implying Eq. (7).
Similarly, correct marginal statistics for the second
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particle’s x and y spin components, together with Eq. (7),
imply, respectively, the real and imaginary parts of Eq.
(8). Therefore, all states |®) of the tripartite system hav-
ing correct marginal statistics for measurements on the
second, untreated EPR particle [equivalent to the con-
straints of Egs. (7) and (8) on Eq. (2)] can be made from
an EPR pair by interaction of an ancilla with the first
particle alone. We already have noted that only such
states of the tripartite system can be made by this means,
because the ability to make a state with nonrandom mar-
ginal statistics for the untreated particle would provide a
superluminal communication channel.

Specializing to the case without ancilla, the set of two-
particle pure states that can be made from an initial EPR
state by unitary transformations acting only on the first
particle consists of all and only those two-particle pure
states yielding correct marginal statistics for measure-
ments on the untreated particle. These states can be de-
scribed by an expression like Eq. (2) but with scalar
coefficients a, b, ¢, and d,

loy=alt)+bll D+cltD+d|L1), (9
obeying the scalar analogs of Egs. (7) and (8), viz.,

lal?>+ld|?=b]*+]c|?= 3 (10)
and

a*c+d*b=0. an

Eliminating three dependent variables, the set of states
preparable from an initial EPR state by unitary operators
on the first particle can be expressed in terms of five real
angles

)= 29 Goie| 1 1)+ e8| 1)) + 309 (oir| 1 o] 1 1))
lo 5 € [11)+e®]]] 5 It +el |1

(12)

with one remaining constraint,
Sty=n+ta+p. (13)

The symmetry of Egs. (12) and (13) with respect to the
coefficients of [|1) and [1]) implies that unitary opera-
tions on one particle of an EPR pair, without ancilla, can-
not influence the marginal statistics of either particle, not
even the one the operator has acted upon. By contrast, if
an ancilla is used, the marginal statistics of the treated
particle can be arbitrarily manipulated, but those of the
untreated particle must remain random, as they were in
the original EPR state.

It is noteworthy that the manifold defined by Egs. (12)
and (13), i.e., the set of states preparable by one-particle
unitary operators on an initial EPR state, is a proper sub-
set, but not a subspace, of all two-particle pure states.
On the one hand it includes states such as

VIZATD =11, ViZ2Qth+1n),

(14)
VI2(tH =11, VI24tD+[11)) .
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which form a complete basis for the four-dimensional
Hilbert space, but on the other hand it does not include
states such as |11), whose creation, from an initial EPR
state, could be used to send a measurable signal to the
observer of the untreated particle.

The orthonormality of Eq. (14) means that manipula-
tions of one particle of a separated EPR pair, while they
cannot be used to communicate directly with the untreat-
ed particle, can be used to encode four reliably distin-
guishable messages in the two-particle system. To per-
form this feat, Alice, the intended receiver of the mes-
sage, first prepares a pure EPR state and lends one parti-
cle of the pair to Bob, the intended sender. Bob then
operates on the particle via one of four unitary operators
so as to put the two-particle system into a chosen one of
the four states of Eq. (14) and then returns the treated
particle to Alice. Now possessing both particles, Alice
can in principle measure them jointly in the orthonormal
basis of Eq. (14), and so reliably learn which operator
Bob applied.

From one viewpoint, this is surprising, because Bob has
communicated a two-bit message by unitarily operating
on a single spin-+ particle. Thinking too classically, one
might be tempted to say that his manipulations have
therefore placed the treated particle into four reliably dis-
tinguishable states, contradicting a basic principle of
quantum mechanics that such a particle can have only
two reliably distinguishable states. But the scheme also
depends on the untreated particle. It therefore might be
better to say, as Schumacher suggests [2], that one of the
two bits is sent forward in time through the treated parti-
cle, while the other bit is sent backward in time to the
EPR source, then forward in time through the untreated
particle, until finally it is combined with the bit in the
treated particle to reconstitute the two-bit message. Be-
cause the bit ‘““sent backward in time” cannot be used to
transmit a meaningful message without the help of the
other particle, no opportunity for time travel or super-
luminal communication is created, just as none is created
in the classic EPR experiment in which simultaneous
measurements are used to establish non-message-bzaring
correlations over a spacelike interval.

The communication of two bits via two particles, one of
which remains fixed while the other makes a round trip, is
no more efficient in number of particles or number of
transmissions than the obvious scheme of directly encod-
ing each bit in one transmitted particle. Nevertheless,
the EPR scheme has the advantage of allowing some of
the particle transmissions to take place before the mes-
sage has been decided upon, perhaps at cheaper “off-
peak’ rates. Thus Alice might prepare a number of EPR
pairs in advance and send one member of each pair to
Bob during off-peak hours. Subsequently, during peak
hours, Bob could use each of these particles to send a
two-bit message back to Alice, or Alice could use each of
her remaining unsent particles to send a two-bit message
to Bob.

From a practical standpoint, the unitary transforma-
tions Bob would apply to his particle to transform the ini-
tial EPR state into the other three states of Eq. (14) are
quite easy to implement, being simply 180° rotations
about the z, x, and y axes. On the other hand, for Alice
to reassemble the two spin-3 particles into a jointly
measurable entity appears technologically infeasible.
However, another version of the EPR effect [3], involving
pairs of particles entangled in position and momentum in-
stead of spin, might allow experimental realization of an
analogous four-way coding scheme. For example (see
Fig. 1), Alice could use parametric down-conversion [4]
in a nonlinear crystal X to produce the EPR-like two-
photon state ¥ =+/1/2(|AC)+|DB)), where |AC) repre-
sents a two-photon state with photons in beams 4 and C
and |DB) represents a two-photon state with photons in
beams D and B. The wave vectors of the four outgoing
beams satisfy the relation k4 +kc =kp +kg =k, where k
is the wave vector of the incoming beam incident on X.
Additional conditions |k4| =|kp| and |kz| =|kc|, though
not necessary for down-conversion, are convenient for our
purposes, and can be enforced through appropriate place-
ment of the crystal and pinholes defining the beams.

In order to receive a two-bit message from Bob, Alice
keeps beams A4 and D under her control, but allows Bob
to handle beams B and C, which together contain one of
the down-converted photons. Bob encodes his four-way
choice by applying a chosen one of four treatments to
beams B and C as they pass through the dashed region in
Fig. 1, before returning to the portion of the apparatus
operated by Alice. Bob’s four treatments are as follows:

FIG. 1. Possible implementation of four-way coding using
parametric down- and up-conversion. Incoming photon of wave
vector k is parametrically down-converted by crystal X into a
superposition of two-photon states, with one photon in beams B
and C and the other in beams 4 and D. Sender encodes a
chosen one of four messages by applying a phase shift ¢; of 0 or
# and including or removing the double-sided mirror M, which,
if removed, swaps beams B and C. Receiver interprets message
by performing a random one of four analogous manipulations
on beams A4 and D, using phase shifter ¢; and mirror M,. Only
if sender and receiver perform the same manipulations can an
up-converted photon be recovered from crystal X'.
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(1) Do nothing, leaving the original state /1/2(|4C)
+|DB)) unaltered. (2) Introduce a half-wave retarda-
tion in one of the beams, for example by setting phase
shifter ¢, =, yielding state V1/2(|4C) —|DB)). (3) Op-
tically interchange beams B and C, e.g., by removing the
two-sided mirror M, yielding state V1/2(|AB)+|DC)).
(4) Perform both the above actions, yielding state
V1/2(|4B) —|DC)). Bob then returns beams B and C to
Alice. Just as in the spin-% particle implementation,
Bob’s action on one particle has placed the entire two-
particle, four-beam system into one of four orthogonal
states, which in principle can be distinguished with per-
fect efficiency.

Figure 1 shows a more practical but imperfectly ef-
ficient detection method, one which usually fails, but,
when it succeeds, tells Alice accurately which choice Bob
made. To begin the detection Alice uses her own phase
shifter ¢, and removable two-sided mirror M, to apply a
randomly chosen one of four treatments to beams 4 and
D, analogous to the treatments applied by Bob to beams
B and C. Beams 4 and D together contain the other pho-
ton, i.e., the one not handled by Bob.

Finally Alice merges all four beams in a nonlinear
crystal X' similar to X, taking care to match propagation
times and beam directions so as to create conditions suit-
able for parametric up-conversion, the inverse of the
down-conversion that occurred in crystal X. If an up-
converted photon of wave vector k emerges from crystal
X', Alice will know that her choice of treatment of the
photon in beams A and D matched Bob’s treatment of the
photon in beams B and C. Otherwise, Alice’s null result
indicates that her treatment differed from Bob’s, or that
up-conversion, while optically possible, failed to occur
due to the imperfect efficiency of the process.

Leaving aside questions of practicality, either of these
schemes would appear to provide an intrinsically untap-
able communication channel, since the two bits Bob in-
scribes in his particle are utterly unintelligible without
the other particle, which remains in Alice’s hands. This
would appear to offer a more elegant means of private
communications than previous quantum cryptographic
schemes [5-9] which require the users to publicly test
some of the data exchanged through the quantum chan-
nel, in order to certify the privacy of the rest. However,
the appearance of intrinsic security is illusory, since an
active adversary could effectively tap into the channel by
intercepting all the particles on their way to and from
Bob, substituting others in such a way as to impersonate
Alice to Bob and Bob to Alice. To defend against this at-
tack Alice and Bob would also need to publicly test some
of their data, rendering the present scheme cryptographi-

2884

cally equivalent to previous schemes, while retaining its
distinctive quantum information-theoretic feature of
packing two bits into a single transmitted two-state parti-
cle.

The above coding scheme can be generalized to prepare
a pair of n-state particles in any one of n?2 orthogonal
states by operations on only one of the particles, if the
original state is maximally entangled, e.g.,

2 |j>|j>J/\/»7, (15)
j=1

|w)=

where |j) are a complete orthonormal set of single-
particle states. Still more generally, if Bob’s particle has
an m-dimensional Hilbert space and Alice’s retained par-
ticle an n-dimensional one, the maximum number of or-
thogonal states of the joint system accessible through
Bob’s manipulation of his particle is the lesser of 7% and
mn. These states span the full joint Hilbert space if
m = n; but if m <n, the accessible states of Alice’s par-
ticle lie in a proper subspace spanned by the m-
independent relative states present in the initial superpo-
sition.
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metric up-conversion as a possible practical means of re-
uniting the separated EPR particles, and Asher Peres,
Benjamin Schumacher, and William Wootters for show-
ing how to generalize the coding scheme to particles with
more than two-dimensional Hilbert spaces.
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