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A simple quasiclassical model is presented to explain the large, highly anisotropic magnetoresistance
and striking magnetoresistance dips at magic angles in the Bechgaard salts, (TMTSF)2X. In the pres-
ence of a magnetic field the electrons are swept along the open orbit sheets of the Fermi surface into
"hot spots" where the scattering rate is high. At magic angles the commensurate motion allows some
fraction of the electrons to avoid the hot spots. A striplike hot region seems appropriate for
(TMTSF)2PF6 and suggests a strong role for electron interactions.

PACS numbers: 72. 15.6d, 73.20.Dx, 74.70.Kn

As the first organic superconductors, the Bechgaard
salts (TMTSF)2X attracted a considerable amount of at-
tention [1]. They are considered quasi-one-dimensional
(quasi-1D) metals with bandwidths in the ratio 4t, :4tb
4t, -l:0.1:0.003 eV and an open-orbit Fermi surface
(FS) which sometimes nests suSciently well to allow

density-wave instabilities. Despite being quasi-1 D, the
magnetoresistance is high and a host of unusual reso-

nances and transitions have been observed in moderate to
high fields. These include field-induced spin-density-wave
(FISDW) transitions, 1/H oscillations in transport, ther-

modynamic, and magnetic properties [2], and observation
of the quantum Hall effect [3]. Recently, a series of ex-
periments have discovered another striking eff'ect —strong
"magic angle" dips in resistance for specific field orienta-
tions [4-7].

The Lorentz force mandates that an electron move on a
constant-energy surface on a plane perpendicular to the
magnetic field. (We consider magnetic fields in the plane
perpendicular to the highly conducting a axis. ) On the
warped sheets of the quasi-1D FS the motion describes a

path with almost constant velocity but different com-
ponents along the two axes. Therefore the frequency with

which the Brillouin zone (BZ) is traversed in the two
directions is usually diff'erent. Lebed [8) noted that when

the frequencies are commensurate, when their ratio is ra-
tional, the effective dimensionality of the system is re-
duced. In a series of papers he predicted that there
should be interesting effects on the FISDW transition
temperature at these commensurate values, obtained by
suitably orienting the field. Similar conclusions were
drawn by Chen and Maki [9]. Lebed and Bak [10] sug-
gested that the commensurability effects renormalize the
electron-electron and impurity scattering and should be
observed in the magnetoresistance in the normal state of
these materials. Experimentally, structure at the magic
angles has been seen by Boebinger et al. , Osada et al. ,
and Naughton et al. in (TMTSF)2C104 [4-7] and re-
cently in (TMTSF) 2PF6 [7]. However, the observed
magnetoresistance shows dips at the magic angles while
the theory predicts peaks.

In this Letter we suggest a simple quasiclassical model
which describes the unusually high magnetoresistance,

the overall anisotropy, and the magic angle effects for

transport along the highly conducting direction. The
resistivity along this direction is controlled by the scatter-

ing rate between the two FS sheets at —+ kF. If there is

a "hot spot" where r„'is very high, the resistance is

determined by how fast electrons find this spot [11,12].
Electrons can diffuse to the hot spot; with a field they are

swept to it. At unmagic angles the electron trajectories
are incommensurate and come arbitrarily close to any

point on the FS. Thus each electron is eventually swept

to the hot spot. For magic angles the commensurate
motion retraces itself and does not cover the FS. Thus a
fraction of the electrons never encounter the hot spot.

To observe "magic angle" magnetoresistance dips it is

not necessary to have "hot spots" per se, it is merely

necessary to have some variation of the intersheet scatter-

ing rate at different points on the FS, r„'(k ky, ). The
zero-field conductivity is determined by the average

scattering time For unm. agic angles at high field each
electron samples the entire FS so the conductivity for
B ~ is determined by the average scattering rate. At
magic angles it is between these values. Since the aver-

age scattering time is always greater than the reciprocal
of the average scattering rate, the high-field conductivity
is always lower than the low-field conductivity. Thus
with any distribution of scattering rates there is always

positive magnetoresistance and magic angle dips. Below

we treat two examples which are algebraically easy.
A dispersion relation for the (TMTSF)2X salts is

E(k) = ft vF ()k„~—kF) —2tb cos(kgb) —2t, cos(k, e)
(1)

with vF =2x10 cm/sec. The FS is shown schematically
in Fig. 1. It consists of two warped sheets with no inter-
sections. The conductivity in the x direction is given by

- .„(k,, k, )dS,
0'z» =2 VF 2

2tr) '
where fdSp is a surface integral on the Fermi sheet and

vz(ky, k, ) =vF. The conductivity is simply related to the
average scattering time.

In the presence of a magnetic field perpendicular to a
(x) and tilted from c (z) by 0, Fig. 1, the electron motion

projected into the plane is uniform:
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Top: Schematic Fermi surface for the (TMTSF)zx
salts. With the magnetic field at an angle 0 from the k, axis, an

electron traverses the Fermi surface at the angle 0 to the k,, axis
as shown by the dashed line. Bottom: For an unmagic angle
the projection of the electron orbit in the k,, -k, plane is schema-
tized by the thin line; the orbit covers the entire area. At a

magic angle the trajectory retraces its path (thick line illus-

trates the case tan8=pb/qc, p = l, q =2).

FIG. 2. (a) The fraction of the electrons swept through an

11 'd
1 rea of dimensions KzKy is illustrate . It can be

represented by the area "painted" by the ellipse in a stro e o

length I, and width k~ (shaded area), where I, is the distance
the electron travels before being scattered. (b) For a magic an-

gle (8=0 is shown) the paint strokes overlap and the painte
area remains finite in infinite field. (c) For a near magic angle

the paint strokes almost overlap, but each umklapp translation

by a reciprocal lattice vector introduces a shift 6 and the entire
surface is eventually painted. However, the time to paint the
entire surface is much longer than for angles far from magic.
(d) The painted area for (c/b)tan8 =p/q = —,

'
is illustrated.

6 = (2rr/b )q tan8 —(2zr/c) p is the perpendicular mis-

mact h distance for a near magic angle, Fig. c . 6=6=0 at
th magic angles. If the mismatch is greater t ane ma
then the additional painted area is proportional to
Below we take iv =min(k&, 8). Ao is the unpainted area.
The areas painted by this process are

Ap= (2rr) '
bxc

I, & IpgqA) =I, xk~, A2=0,
l, & lp(qA) =lpyq&k~, Az=(l, —

lpgq) xiv;
entire area covered:

(4)

(2n)z=I xk
exp

In Fig. 3 we show the total area painted (the fraction of
the FS swept into the wormhole) for magic angles span-

Illng p, Q' = 0= —4 t 4. In this and the following figure we

have generalized the above results slightly by putting in

the nonorthorhombic unit cell and the actual lattice pa-
rameters. The triclinic nature of the cell is what is re-
sponsible for the asymmetry.

The conductivity o„eel;A;r; The av.erage scatter-
ing time for each region is the average time to be swept to
the wormhole. For I, & Ip/q we have r0- =r/2, for

r =r, r ~
=I ~q/(2evFB/hc), rz=r ~+ r/2, andp/q~ ~0 ~ I p q

if the entire area is covered we have r ~

=
p/q evF c

rz = r ~+ (Az/6)/(2evFB/Ac). For small Hall conductivi-

ty as in the metallic state of the Bechgaard salts the resis-
tance is the inverse conductivity. The resistance for the
wormhole model is shown in Fig. 4 ,a, . The cosinelike

(cos8y —sin8z) . (3)
r)t bc

I th first case we consider a "wormhole" on the
FS—a region in which an electron is immediate y
traElsferred by = 2k~ to the other Fermi sheet, T =0 for
k in the ellipse of dimensions Kz, Ki as shown in Fig.
2(a). We take the scattering at all other points to be a
constant r. From Eq. (3) the path length traversed by an

electron before it scatters is then I,=evpBr/hc I—f the.
field is tilted at an angle 0, then the electrons in area
A =I, x k & are swept into the wormhole. Here k &

=(K cos 8+K sin 8)' . If the path length 1, is longer
than the dimension of the BZ then upon translation by a

reciprocal lattice vector, the area may overlap itself. In
particular for magic angles, where

o 2ir/ctan&=
q 2rr/b

the area exactly overlays itself and no further area is

swept to the wormhole with increasing field. This is illus-
1trated for p/q =0 and p/q = —, in Fig. 2.

We want to find the area swept into the wormhole at
an angle slightly away from a magic angle. An electron
trajectory starts overlapping itself when it has gone a dis-
tance Ip~q

= (2rr/b)q/cos8 [Figs. 2(b) and 2(d)]. For
I (I the area swept into the wormhole is I, x

~ ~ ~

cessEquivalently we can imagine the time-reversed proc
where the wormhole paints an equal area of the BZ by re-
tracing the electrons path. For I, ) Ipgq the painted areas
overlap. The area just before overlap is A~ =Ip/qxk&.
The additional area painted is Az(lp/q I )xb wliere
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The striplike scattering region suggests an even more
speculative idea. If a zone boundary intersects the FS it
wouM do so in a pair of wavy lines along c*. A recipro-
cal lattice vector would then directly give the interplane
scattering. The strong-coupling version would be a gap
along these lines and the formation of two closed-orbit
cylinders containing an equal number of electrons and
holes. (For one dimension, the large-Coulomb-repulsion
half-filled Hubbard model has an insulating gap. wheth-
er some aspects of this gap remain for the quarter-filled
case with small dimerization and small transverse band-
widths remains to be treated theoretically. ) Most of the
calculations above go through but the interpretation
would be that at certain regions along k, there is a higher
probability of breakdown between the cylinders. The
closed orbit cylinders would also explain the mysterious
"fast oscillations" observed in the Bechgaard salts [2]
and the magnetization anomalies at the magic angles [6].

Cu shows magic angle effects from electrons swept into
the neck orbits in a mechanism similar to the present pro-
posal [13]. In quasi-two-dimensional systems, magic an-

gles are understood in terms of the vanishing of the
dispersion along the field direction when an orbit takes in

both the belly and the neck [14]. A similar model has
been proposed by Osada, Kagoshima, and Miura for the
Bechgaard salts [151 with the commensurability leading
to the vanishing of the dispersion along the field. Maki
[16] has recently calculated strong resonant dips in con-
ductivity. In these latter cases a characteristic behavior
is that the magic angle dips are broad and parabolic,
whereas the anti-magic-angle peaks are cusplike, the op-
posite shape of the present model. Moreover, the latter
models show large effects along the field direction and

only subsidiary effects for p,„.The (TMTSF)zPFs [7]
data show strong downward cusps in p„„muchmore like

the predictions of the present model.
We have demonstrated that a quasiclassical model with

any variation in the scattering rate on the Fermi surface
can produce magic angle dips in the magnetoresistance of
quasi-one-dimensional metals. A model which repro-
duces the essential features of the effects observed in

(TMTSF)zPFs is one in which the scattering is dominat-
ed by a strip parallel to the c* axis. A possible cause for
this strip is strong electron-electron scattering, the pres-
ence of a pseudo-gap related to the insipient field-induced

spin-density wave, or the combined effect of a strong
Coulomb correlation with the dimerization of the
TMTSF stack giving rise to true or pseudo c1osed orbits.
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