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Linear-Response Calculations of Lattice Dynamics Using Muffin-Tin Basis Sets
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An all-electron formulation of density-functional linear-response theory is presented. It is based on

representing the first-order corrections to the one-electron wave functions in terms of a muffin-tin basis

set. This, for instance, makes ab initio calculations of lattice dynamics for transition-metal systems pos-

sible. The computability is demonstrated for phonon dispersions in Nb and the results are found to be in

excellent agreement with frozen-phonon calculations and with experimental data.
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In recent years, the density-functional (DF) approach
[1] to the linear-response problem has proved to be a
powerful method for determining various solid-state prop-
erties. These include static dielectric properties in semi-
conductors and ionic crystals [2], screening response to
electric fields and point charges [3], as well as lattice
dynamical properties [4-71.

The problem for calculating the lattice dynamics essen-

tially amounts to finding the change of the electronic
charge density induced by the presence of a phonon with

wave vector q. To date the most efficient technique
developed for calculating this quantity is the solid-state
generalization [41 of the Sternheimer method [81. In this
method, the external perturbation b'V, „& caused by the
proton displacements BR=de'i'"+d*e ' '" (d is the
polarization vector) is static, real, and can be represented
as the sum of two components: BVgxt 8 Vgxt+~
Both components are Hermitian, i.e., (8+V,„&)*=b V,„&

and they translate like Bloch waves with wave vectors +q
and —

q in the Brillouin zone of the unperturbed crystal.
The first-order change of the charge density bp can be
represented in the same form as BV,„t, i.e., Bp=8+p
+b p, and is expressed in terms of the one-electron
wave functions y~ and their first-order corrections b+yio.
and b y1a. as follows: b p=g fta(& —

etio. y1o.+ teria.

xb —
llt1a), where b ylo, =(b 1it1a) . Here fia, are the

occupation numbers and A, numerates the bands. The
first-order correction ~b

—
kA, )—=b 1ir~ is a Bloch state

with wave vector k ~ q and is the solution of the so-called
Sternheimer equation, which is the Schrodinger equation
to linear order:

(H —El )ib'-k~)+b- Vie, ) =0,

where H = —V + V is the unperturbed one-electron
Hamiltonian. Equation (1) must be solved self-con-
sistently since the induced charge density expressed via
~b

—kX) screens out the external field b —V,„&. Therefore,
it is the screened perturbation b —V which appears in Eq.
(1). There, we have also projected onto periodicity k ~ q
and dropped the term b —Eia ~kk, ).

This method has the following advantages: It is not
limited to q's commensurate with the lattice as is the
frozen-phonon supercell approach and it does not use all

the Bloch states of the unperturbed crystal as a basis for
representing ~b

—kX) as it is done in the perturbative ap-
proach [9].

The construction of a rapidity convergent basis set for
representing the first-order corrections is important be-
cause ~kA, ) and ~b

—
kA, ) oscillate in the core region. To

date, most calculations of phonon dispersions have been
done for broad-band semiconductors and insulators [5],
where this problem can be eliminated by the pseudopo-
tential approximation. The latter allows the use of
plane-wave basis sets. Unfortunately, with decreasing
bandwidth, the plane-wave expansion of the pseudo wave
functions converges more slowly and it becomes less ad-
vantageous to use pseudopotentials. Indeed, until most
recently [6,7], the literature contains no ab initio calcula-
tions of phonon dispersions for transition-metal systems
[10].

In the present Letter, I propose an efficient all-electron
approach. The first-order corrections are represented in
terms of muon tin (MT)-ba-sis sets such as linear
muffin-tin orbitals (LMTO) or linear augmented plane
waves (LAPW) [11]. The important advantage of such a
formulation is that it treats narrow-band systems on the
same footing as the wide-band systems. The method is
also fast and accurate: The time required to calculate the
dynamical matrix for an arbitrary q vector is about the
same as that required to perform a self-consistent band-
structure calculation for the unperturbed crystal; the ac-
curacy of calculated phonon frequencies is a few percent.

There are two problems connected with the use of MT
basis functions in the linear-response method. The first
problem is that the unperturbed energy bands F~ and
wave functions ~lO. ) are obtained in this basis by applying
the Rayleigh-Ritz variational principle. They are not ex-
act solutions of the one-electron Schrodinger equation.
Consequently, a variational formulation for the linear
response is also necessary. The second problem is that
the MT basis functions are tailored to the unperturbed
one-electron potential and must therefore be reconstruct-
ed to take into account the specifics of the perturbation.
In particular, the partial-wave augmentation inside the
MT spheres must follow by the atomic movements.

The first problem is to find an energy functional the
minimization of which with respect to ~b

—
kA, ) leads to
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the solution of Eq. (1). This functional can be obtained by expanding the total energy with respect to the change in the
external potential up to second order,

d E =gf~((8+6 kX+8 6+kkIH —EigIkk)+2(6' kA. IH —EigI8+kA))

+ 8+p6 V+ 6+p6 V,„,+J pal+6 V,„i+

where I8 —8 kX) denote second-order corrections to the
wave functions and where 6+6 V,„t is the second-order
change in the bare nuclear potential due to atomic dis-

placements [12]. This expression is the second-order
change in the DF total energy (its electronic part) and is

directly interpreted as the electronic contribution to the
dynamical matrix. (Its nuclear part is the Ewald contri-
bution which is evaluated trivially. ) d E is variaiiona!
with respect to the first-order changes in wave functions
just like the unperturbed total energy is variational with

respect to unperturbed states Ikk, ). This property of the
density functional follows from the Hohenberg-Kohn
variational principle and allows us to estimate the dynam-
ical matrix quite precisely: While the first-order changes
in the wave functions and the charge densities are only
variationally accurate, the error will be of the second or-
der with respect to the error in I6 —kX). The expression
(2) in its minimum contains no second and third terms
and may therefore be interpreted as the Hellmann-

Feynman result (last two terms there) plus incomplete-
basis-set (IBS) correction [first contribution in (2)]. The
latter is due to approximate character of unperturbed
states Ikk). The IBS term is the analog of the "Pulay
force" known in atomic force calculations [13].

The second problem is to construct a specific Hilbert

space for representing the first-order corrections. Let us

first specify the MT basis set [Ig,")] with the size N used

to expand the unperturbed functions
I
kA, ): Space is parti-

tioned into atom-centered MT spheres and the interstitial
region. Within the spheres the MT orbitals are defined

as linear combinations of numerical radial functions mul-

tiplied by spherical harmonics. In the interstitial region
these quantities can be, for instance, spherical Hankel
functions, as in the LMTO method, or plane waves as in

the LAPW method. The numerical radial functions are
the regular solutions of the radial Schrodinger equation
for the spherical part of the potential at an energy E, at
the center of interest, as well as the energy derivatives of
these functions. The one-electron wave function is repre-
sented as the linear combination Ikk, ) =g, Ig,")2,",
where A," are the expansion coefficients found from the
matrix eigenvalue problem: P, (gpIH —Ei,&I@ )2 =0.JV k

I k kA.

C.C. , (2)

(3)

Since I8 —kk) is a Bloch state of wave vector k+ q, so
are IS —g,") and Ig,

"—q). The latter is the original basis
function of wave vector k+ q and the former is construct-
ed as follows: Inside the MT spheres, the basis I8 —g,") is
represented by the change in the numerical radial func-
tions plus a term connected with the change in the struc-
ture constants, specifically, in the LMTO-based methods.
The change in the radial functions is described by a set of
inhomogeneous (uncoupled) differential equations ob-
tained by linearizing the radial Schrodinger equations
with respect to r$

—V [6]. It contains two contributions:
the first, trivial one, connected with the rigid movement
of the potential, and the second, connected with the
change in the shape of the potential. In the interstitial
region, the basis I6 —g,") is zero in the LAPW method,
and in the LMTO method it is given by the sum
+Re' " "&hz(r —R) of spherical Hankel functions hI
centered at sites R of the lattice. The expansion of
I6 —kX) written in the form (3) is fastly convergent be-
cause the basis I8 —g,"), by construction, is adjusted to
the perturbation just like the original basis jg,") is adjust-
ed to the unperturbed one-electron potential. Equation
(3) can be interpreted as the representation of I6 —kk) in

terms of Ig,"— ) in the local coordinate system displaced
together with the nucleus; the convergence with respect to
the number of orbitals per atom in (3) must be about the
same as for the unperturbed states.

The second-order changes
I
6 —6 kX) must also be

considered. They appear in this formulation of the prob-
lem because the states Ikk, ) are not exact, but merely
variational solutions [see first term in (2)]. This second-
order variation of the wave functions is

I (The one-electron Hamiltonian H may include nonspheri-
cal terms of the potential. )

I n the linear-response calculation, the first-order
change IB

—
kA, ) must include the change I6 —g,") in the

Blotch MT basis set as well as change 6 —3," in the ex-
pansion coeScients, i.e.,

where 6 —8 2, and I6 —8 g,") are the second-order changes in the expansion coefficients and the basis functions, re-
spectively. Inserting this definition into Eq. (2) one realizes that the second-order changes in A, disappear because
they enter the functional only as coefficients of the unperturbed basis functions. The last three contributions in Eq. (4),
on the other hand, are important for evaluating d E.

2820



VOLUME 69, NUMBER 19 PH YSICAL REVIEW LETTERS 9 NOVEMBER 1992

Having fixed the Hilbert space [!g);!bg)] of the basis functions, we now see that the variational freedom of the func-

tional (2) is provided only by the coefficients I5
—2, . Let us minimize d E with respect to b —A, . We obtain

N N

Z&gp 'I-H E—~IX." '» &-. +Z(&Xp 'I& I'-IX."&+&& Xg"-'IH E—~IZ."&+&Xp 'IH E—~l& Z."-&»~=0.

This linear system of equations determines the position of the minimum of d E in the space of the coefficients 8 —A, ,
and all second-order changes, such as!6—8 g"), do not affect it. The functions!8 —b g,"), on the other hand, define

the value d E itself in its minimum and must be taken into account in the dynamical matrix evaluation.
We must now solve (5) for the coefficients b —A, . This is done by inverting the matrix &giI !H—E~!g,"—q), whose

eigenvalues are EI, ~qx E~—and eigenvectors are 2," n", &,
'= I,N. The result for b —A, is then substituted into (3)

that gives the final expression for !8 —kX) in the form
1P

N N N

!8 kA, ) =Q!8—g,")A, +g &k~qX, '!H E~ —g8 g,"A, + gb —g," qA,"—q H —EIu„!kl,)
a k+ qX' a a

+&k~q)'lb-I'Ik&& . (6)

This formula has a simple physical meaning. The first
three terms containing !bg) appear because of the use of
variational solutions. These can be interpreted as IBS
corrections to the last term (the one with 8 —V), which

has the form of standard perturbation theory. If all un-

perturbed states !k~qk') are exact and they represent
mathematically a complete basis set, then the first and
second terms in (6) cancel each other and the third term
also vanishes: We thus come back to the standard pertur-
bative formula. However, the use of the functions !bg) in

the basis greatly reduces the number of states !k ~ qA, ')

needed to reach the convergence in (6). Namely, follow-

ing the above derivation, the summation in the last three
terms is over A energy states, % being the size of the
basis for the unperturbed system. Furthermore, since the
response can be found as a ground-state property of both
perturbed and unperturbed systems, only the occupied
states must be well reproduced; the excited states can, in

principle, be arbitrary. The LMTO and LAPW methods
are very suitable for this purpose: They are fast and ac-
curate within a certain energy window. The states
!k~qk') in (6) are the eigenstates of the Hamiltonian
matrix &g,"-q!H!~." q& which is -itself constructed to
reproduce the occupied bands well. (This is the energy
window of our interest and all centers of linearization E,,
are placed in there. ) Consequently, the excited states are
not to be interpreted as the exact ones; only the
knowledge of occupied energy bands is necessary in this
linear-response formulation [14].

The method described above can, in principle, be ap-
plied to general perturbations. Below, a specific applica-
tion to the transition-metal lattice dynamics is given and
the results for phonon dispersions in bcc Nb calculated in

ten equally spaced q points along the line (2Ir/a)(0, 0, 1)
are presented. I have generalized a recent version [15] of
the full-potential LMTO method for these linear-response
calculations. One-center spherical-harmonic expansions
(up to l,„=8)are used for all the relevant quantities in-

cluding charge densities, potentials, and response func-

! tions. The LMTO basis [!g)] and its change [!Sg)] in-
clude only s, p, and d orbitals per atom [N =9 in Eq.
(6)]. The tetrahedron method of Ref. [16] is used for the
integration over the Brillouin zone (BZ); both electron-
phonon matrix elements and energy denominator in (6)
are interpolated linearly within a polyhedron. The num-
ber of k points is equal to 91 (285 near the phonon
anomalies) per —,', th of the BZ. The lattice constant was

taken to be a =6.15 a.u. as obtained by the LMTO total-
energy calculation.

Figure 1 shows calculated longitudinal and transverse
phonon branches for Nb. The results of the linear-
response method (full lines) are compared with frozen-
phonon supercell calculations performed independently
with the full-potential LMTO method (circles) as well as
with experiment [17] (triangles). We see that the
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FIG. 1. Calculated phonon dispersions in Nb (full lines)

along the (001) direction in the Brillouin zone using the linear-
response method described in the paper. Results of total-energy
supercell calculations (circles) using the full-potential LMTO
method [15] as well as experiment [17] (triangles). L, longitu-
dinal; T, transverse modes.
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linear-response theory excellently reproduces the overall
features: (i) the correct long-wavelength behavior which
shows that the acoustic sum rule is exactly satisfied; (ii)
the dip in the longitudinal branch near the point
(2z/a)(0, 0,0.7) which agrees with experiment within 0.06
THz; and (iii) softening of the transverse modes at long
wavelengths. The elastic constants C~ ~ and C44 estimated
from the calculated sound velocities are within 2.6% of
their measured values. All theoretical phonon frequen-
cies agree remarkably well with experiment; the average
discrepancy is only 0.9/o and the maximum error is equal
to 3.4%.

In conclusion, I have devised an ab initio linear-
response method which does not rely on the pseudopoten-
tial approximation but on the muffin-tin basis sets. Ap-
plication to the phonon dispersions in bcc Nb using
linear-muffin-tin orbitals demonstrates that the method is

fast and accurate.
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