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The nature of the orientational phase transition in the three-dimensional Lebwohl-Lasher model of
liquid crystals has been studied by computer simulation using reweighting techniques and finite-size

scaling analysis. Unambiguous numerical evidence is found in favor of a weak first-order transition
and the presence of pseudospinodal points, T~, which are extremely close to the equilibrium tran-
sition temperature, iT, —T~~/T, 0.5 x 10, in good agreement with experimental data for the
nematic-isotropic transition.
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The Lebwohl-Lasher model [1] is the lattice version
of the Maier-Saupe model [2] of an anisotropic liquid in
which the molecules are coupled by the Hamiltonian

H = e)—Pz(cos 8,s), (1)

where P2(cos8,s) = z(3cos 8,~ —1), 8,s is the angle
between the axes of rotor molecules at nearest-neighbor
sites i and j, and e is a coupling parameter. The Lebwohl-
Lasher model neglects the coupling between the transla-
tional variables and the orientational variables which is
present in a real nematogen and it is therefore an appro-
priate model for orientational ordering in a solid whereas
it is leaving out important properties of liquid crystals.
Still it is believed that this model can reveal some of
the essential transitional properties of liquid crystals near
the nematic-isotropic phase transition. The orientational
order in the Lebwohl-Lasher model is characterized by
a second-rank tensor order parameter, Q. Within the
Landau —de Gennes theory [3] the free energy of the model
is expanded in components of this order parameter as
F = Fe+ ziA(T)Q pQp + sB(T)Q pQp~Q~ +G(Q4).
F contains a third-order invariant which implies that
the model should exhibit a first-order transition at a
temperature T, . From the mean-field solution to the
Maier-Saupe model it can be estimated that the spinodal
temperature T*, which marks the stability limit of the
isotropic phase, is displaced relative to the equilibrium
transition temperature by (T, —T')/T, 10 which is
almost 2 orders of magnitude larger than typical experi-
mental values [3—5].

The nature and the properties of the orientational
phase transition in the Lebwohl-Lasher model have been
under active investigation for a considerable time [1,
6—10]. No unambiguous evidence for the first-order na-
ture of the transition has as yet been presented in a cal-
culation which fully allows for fluctuations and it has
remained unclear to what extent the model may de-

scribe the close proximity of the experimentally observed
stability limit of the isotropic phase to the transition
point. In this Letter, we have exploited modern nu-

merical techniques of analyzing phase transitions via a
finite-size scaling analysis to give conclusive numerical
evidence for the presence of a very weak first-order tran-
sition in the three-dimensional Lebwohl-Lasher model.
The transition is possibly weaker than the transition in

the three-dimensional three-state Potts model [11].Fur-
thermore, by determining the density of states for the
model and from the density of states generating the
free energy in the metastable and unstable regimes, we

are able to determine an upper limit of the distance
of the pseudospinodal points from the transition to be
iT, —T+i/T, (0.5 x 10 s. This result is in good agree-
ment with experimental data for room-temperature ne-

matogens [3—5].
We have investigated the orientational transition in

the Lebwohl-Lasher model on a simple cubic lattice with
periodic boundary conditions by performing a series of
extensive Monte Carlo computer-simulation calculations
of the temperature dependence of the internal energy,
the orientational (nematic) order parameter, and the
corresponding response functions, i.e. , the specific heat,
C(T, L), and the ordering susceptibility, y(T, L). The
calculations have been performed systematically for a
number of different lattice sizes, Ls. In order to obtain
maximum statistical accuracy, the Ferrenberg-Swendsen
reweighting technique [12] has been used. This technique
works on the level of density of states or distribution
functions from which the relevant part of the free en-

ergy can be derived. A finite-size scaling analysis along
the lines suggested by Lee and Kosterlitz [13,14] has then
been applied to the data to assess the nature of the phase
transition. The Lee-Kosterlitz method constitutes an un-

ambiguous method of numerically detecting a first-order
transition [14].

The value of orientational order parameter is deter-
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where t9, is the angle between the axis of the ith rotor
molecule and the nematic director. Because of the non-

broken continuous symmetry of the orientational order-

ing, the direction of the nematic director varies and has
to be determined during the simulation in order to cal-
culate (Pz). This is facilitated by diagonalization of the
tensor order parameter Q. The instantaneous value of
the order parameter is then given by the largest eigen-
value, A, of Q [8]. The thermodynamic order parameter
is obtained as the average, (A) = (Pq)~.

A first-order phase transition is characterized by dis-

continuities in the first derivatives of the free energy. This
results in the thermodynamic limit in singularities at the
transition for the specific heat C(T) and for the order-
ing susceptibility A(T). In a finite system, however, the
transition region is broadened and the peaks in C(T) and

y(T) are finite and their height increases with increasing
linear lattice size L [15]. Furthermore, the location of the
maxima varies in a size-dependent manner. The maxima
grow as L" in d dimensions, e.g. , A,„(L) Ld.

The Monte Carlo simulations are performed in three
steps. First, simulations are performed to determine
as accurately as possible the positions of the peaks in

C(T, L) and A'(T, L). Second, extensive simulations are
performed very close to the transition for different values
of L. These simulations typically involve (1 —2) x 10s

Monte Carlo steps per site. Third, the reweighting tech-
nique of Ferrenberg and Swendsen [12] is used to cal-
culate the distribution function 'P(A, T, L) for the order
parameter for a range of temperatures in the transition
region. From P(A, T, L) the response functions can be
calculated in the transition region. A finite-size scaling
analysis can then be applied to the data. As an example,
Fig. 1 shows data for the susceptibility, y(T, L), and how

the maximum, g~~„(L), scales with system size. The ex-

pected scaling relation for a first-order transition is found

to hold, g,„(L)
The order of the phase transition can be examined

more closely by the method of Lee and Kosterlitz [13,
14]. This method involves a calculation of the free en-

ergy as a function of the order parameter at the transi-
tion using the probability distribution P(A, T, L). The
free-energy-like quantity X(A, T, L) defined by [14]

X(A, T, L) - —ln P(A, T, L)

differs from the bulk free energy by a temperature- and
L-dependent additive quantity. However, at fixed T and

L, the shape of E(A, T, L) is identical to that of the bulk
free energy and furthermore X(A, T, L) —X(A', T, I) is

a correct measure of free-energy differences. At a first-
order transition, X(A, L) has pronounced double minima
corresponding to two coexisting phases at A = Ai and

60

6 24I

20

I

111 112 113 114 115 116
T

FIG. 1. Ordering susceptibility, y(T) (in units of e ),
as a function of temperature T (in units of eikrr, for four
different lattice sizes, L = 16, 20, 24, and 28 . Inset: The
finite-size scaling behavior of the maximum, y,„(L), of the
susceptibility.

A = Aq separated by a barrier, AE(L), with a maximum
at A ~„corresponding to an interface between the two
phases. The height of the barrier measures the interfa-
cial free energy between the two coexisting phases and
is given by AP(L) = F(A,„,L) —F(Ar, L) L"
Therefore, at a first-order transition, AP(L) increases
rnonotonically with L. The finding of such an increase is
an unambiguous sign of a first-order transition [14]. In
contrast, AE(L) approaches a constant at a continuous
transition and vanishes in the absence of a transition [13,
16]. We have measured the transition temperature in the
finite system in three different ways: from the position of
the maximum in the specific heat, TP (L), from the po-
sition of the maximum in the susceptibility, T, (L), and
from the criterion that the two minima in the free en-

ergy are equally deep, T+(L). In Fig. 2 are shown the
data for the free energy for different system sizes deter-
mined at temperatures, T~+(L) The finite-s. ize behavior
is very clear: As the system size is increased, a double-
well structure develops in the free energy. This is con-
clusive numerical evidence in favor of a first-order tran-
sition. Since the barrier between the two minima is only
well pronounced for the two larger system sizes, we have
insufIicient data to assess the scaling behavior of the bar-
rier height. This shows that the first-order transition is

very weak and in this sense it is considerably weaker than
the first-order transitions in the three-dimensional three-
state Potts model [11] and the two-dimensional five-state
Potts model [13] which are notoriously known to be weak
first-order transitions.

In Fig. 3 are shown the results for the different mea-

sures of the finite-system phase transition temperature
and how they scale with system size. For finite systems,
the different measures of the transition temperature vary,
but they should tend to the same value in the thermody-
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no rigorous basis for the finite-size scaling behavior of
T~(L). Hence we want to consider our estimates of T+
to denote the maximal displacement from the transition.
Our result from Fig. 3 is that the pseudospinodal points
are extremely close to the equilibrium transition temper-
ature, ]T, —T+]/T, & 0.5 x 10

The powerful reweighting technique by Ferrenberg and
Swendsen [12] makes it feasible to generate numerical
data for the free energy, cf. Figs. 2 and 4, which give de-
tailed insight into the nonequilibrium properties of a sys-
tem which undergoes such a weak first-order transition
as the three-dimensional Lebwohl-Lasher model. This
is probably the reason that earlier numerical work on
systems as large as 30s molecules [7] on the model us-

ing more conventional techniques involving distribution
functions had difBculty in matching the two free-energy
minima. In the work by Fabbri and Zannoni [7] the sta-
bility limit of the isotropic phase was investigated by an
extrapolation analysis of an Ornstein-Zernike expression
for the pair correlation function. The result found for
a 30 system, (T, —T*)/T, 3 x 10 s, is in order-
of-magnitude agreement with the value obtained in the
present calculation which indicates that the assumptions
underlying the work in Ref. [7] are resonable [19].

Finally, we wish to compare our results to experimental
data for the nematic-isotropic transition in liquid crys-
tals. It has been found [3—5] for a large series of room-
temperature nematogens that the transition enthalpy
and the relative stability limit of the isotropic phase are
only slightly sensitive to the material in question. Hence
it is pertinent to compare results from the simple and
parameterless Lebwohl-Lasher model with experimental
data. As a specific example we refer here to the liquid
crystal octylcyanobiphenyl (8CB) [4, 5] with the follow-

ing experimental transitional properties, T, = 40.8'C
and AH = 612 J/mol. From the experimental transition
temperature we can determine the value of the energy
parameter e, which leads to AH = 460 J/mol for the
Lebwohl-Lasher model. Since nematics usually cannot
be supercooled [5], the experimental determination of the
stability limit of the isotropic phase is not very accurate
since it is obtained by extrapolation of the equilibrium
data for the susceptibility or the specific heat from the
isotropic phase into the nematic phase. The experimen-
tal values [4, 5] quoted for (T, —T*)/T, lie in the range

(0.2 —3) x 10 in good agreement with our results
from the Lebwohl-Lasher model. Hence it appears that
the Lebwohl-Lasher model is quite successful in describ-
ing experimental data for those transitional properties
which are not very sensitive to the nature of the mate-
rial.
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