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We present a method to calculate the full phonon spectrum using the local-density approximation and
Hellmann-Feynman forces. By a limited number of supercell calculations of the planar force constants,
the interatomic force constant matrices are determined. One can then construct the dynamical matrix
for any arbitrary wave vector in the Brillouin zone. We describe in detail the procedure for elements in
the diamond structure and derive the phonon dispersion curves for Si. The anharmonic effects can also

be studied by the present method.

PACS numbers: 63.20.Dj

The energy dispersion of phonons has long been a focus
of interest because it provides rich information about the
dynamical properties of the material [1]. In particular, it
is an essential input in the calculation of heat capacities,
thermal expansion coefficients, electron-phonon interac-
tions, etc., for the crystal. Attempts have also been made
to study the vibrational properties of complex systems,
such as semiconductor alloys and superlattices, based on
information about the force constants of the constituent
materials [2,3]. Ab initio calculations of the force con-
stant matrices and phonon spectra will not only give an
accurate database for these applications but also provide
stringent tests of various empirical models [4,5].

There are basically two methods in use for the calcula-
tions of phonon frequencies within the framework of the
local-density approximation (LDA): (1) the linear re-
sponse theory with dielectric screening in which atomic
displacements are treated as perturbations [6] and (2) the
*“direct” approach which calculates the total energy of
the distorted system or the Hellmann-Feynman forces [7]
on the atoms using the supercell method. Each of these
methods has its advantages and drawbacks. In the first
approach, the response to perturbations was calculated in
the past by inverting the dielectric matrix [6] which is
computationally cumbersome and restrictive. Recently,
new schemes have been proposed to obtain the linear
response either by iterating up to self-consistency [8] or
by solving an integral equation [9] for the change in the
electron density. These methods can handle perturba-
tions of arbitrary wave vectors, yet only linear effects are
considered.

On the other hand, the direct approach which considers
periodic distortions using supercells is computationally
straightforward. It handles the perturbed and unper-
turbed systems on the same footing under the frozen-
phonon approximation, and allows one to study, in princi-
ple, both linear and nonlinear effects. Phonon frequencies
for isolated symmetry points can be easily calculated [10]
by the pseudopotential LDA method. However, the su-
percell size increases rapidly as the symmetry decreases.
Only the dispersions along a few high-symmetry direc-
tions have been reported [11-14] using this direct ap-
proach.
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In this paper, we will present a procedure to obtain the
full real space interatomic force constant matrices using
the direct supercell approach. It is based on the observa-
tion that the planar force constants are in fact linear
combinations of these matrix elements. Therefore from a
limited set of planar force constants for some high-
symmetry directions (which can be easily and accurately
determined using supercells), the three-dimensional force
constant matrices can be constructed. These force con-
stants of the perfect crystal are particularly useful in the
study of the dynamical properties of other mixed systems
[2,3,15]. In addition, phonon frequencies associated with
any wave vector in the Brillouin zone can be obtained
from these force constants. The method requires only the
standard total energy codes with 10-20 atoms per cell
and can be easily applied to both insulators and metals.

One distinct advantage of this method over the linear
response theory [8] is its ability to study the anharmonic
effects as well. In the force calculation, the relation be-
tween the force and the displacement may not be exactly
linear, nor along the same direction. Although only the
harmonic term will be discussed in the present Letter, in-
formation on anharmonicity can be readily available if
higher-order terms are kept in the planar force calcula-
tion. Following similar procedures outlined below, infor-
mation on the cubic or higher-order force constants
(which will be third- or higher-rank tensors) can be ob-
tained. This will be the subject of further investigations.

In the harmonic approximation, the energy change re-
sulting from small displacements of atoms is usually writ-
ten in the general form

Unm=2 ¥ w(R)-DPR-R)-uAR), (1)
2RRap

where u®(R) is the deviation from equilibrium of atom a
in the unit cell associated with lattice vector R, and
D (R —R') is the force constant matrix connecting
atom « in unit cell R and atom B in unit cell R’. (a and
B are indices of atoms in the basis.) There are some gen-
eral symmetries that must be obeyed by the matrices
D?(R) [16], yet it has not been computationally feasible
to calculate these matrices by directly evaluating the
LDA total energies for a series of geometries with isolat-
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ed distortions. However, the one-dimensional (planar)
force constants along some high-symmetry directions can
be calculated by evaluating the Hellmann-Feynman
forces in the presence of a simultaneous displacement of
one whole layer of (equivalent) atoms. (For details, see
Refs. [13,14].) Translational symmetry is lost only along
the direction normal to the displaced layer. It is analo-
gous to a coupled linear chain problem in which the po-
larization directions of the normal modes are well
defined. As long as the interaction decays reasonably
fast, the supercell method can be used.

In general (within the harmonic approximation), the
force on atom a in the nth layer, F*(n), is proportional to
the collective displacement of atom f in the mth layer,

uf(m):

—F*(n) =X A%(n—m) -uP(m), 2)
m,p

where A% (n) is the planar force constant matrix for the
chosen direction. Normally longitudinal (L) or trans-
verse (T) displacements of the atomic layer are made in
the calculation and the corresponding forces are evalu-
ated. The resulting force constants will then be the pro-
jection é;-A%%(n)-é;, where i and j represent the polar-
ization directions (7 or L). Knowing these projected
force constants and polarization vectors, it is straightfor-
ward to map out the matrix A*#(n) by a unitary transfor-
mation.
The relation between A%*(n) and D®#(R) is simply

A%P(n) = > D*(R), (3)
R.é (R+145) =d,

where € is the unit vector normal to the atomic layer, d,
is the distance between the displaced layer and the layer
where the force is being considered, and 7,5=7,— 75 is
the vector connecting atoms a and f§ in the basis. By re-
peating the procedure for other high-symmetry direc-
tions, one obtains a set of linear equations for D (R).
The crystal symmetry can also be used to reduce the
number of independent variables and the matrix elements
of D% (R) can be solved if a sufficient number of planar
constants are known.

In practice, the summation over R is limited to those
vectors within a sphere of radius Rpmax, Wwhich means that
only the interaction between atoms separated by a cutoff
distance is considered. R nax needs to be determined care-
fully by the convergence study in the calculation. There
are several ways to check it, including inspecting the de-
cay of the planar force constants, checking the sum rule,
and the convergence of elastic constants.

We will use the diamond structure as an example
which has two atoms in the primitive cell. Following the
notations in Refs. [13,14], they are denoted by a and c.
respectively, with 7,.=(a/4,a/4,a/4). The four kinds
of 3x3 interatomic force constant matrices to be con-
sidered are D(R), D**(R), D*(R), and D*(R). Tak-
ing into account the inversion symmetry and the def-
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inition of the force constant as the second derivative of
the interaction energy, we have

D*(R)=D“(—R),

D(‘(‘(R) =Daa( __R)T ,
4)
D“(R)=D“(R)T,

D“(R)=D“(R)" .

Therefore only two of the above four kinds of matrices
need to be evaluated. Moreover, the force constant ma-
trix transforms as a second-rank tensor,

D®R')=S-D*R)-S 7', (5)

where S is any symmetry operation that maps the atom
at R+17,4to that at R'+ 745

The present calculation for silicon included the intera-
tomic force constants up to the eighth nearest neighbors,
which results in 3/ independent matrix elements (see
Table 1). The planar force constants are evaluated for
the [100], [110], and [111] directions using the supercell
consisting of eight (or twelve), sixteen and eight atoms,
respectively. In our calculations we use the Ceperley-
Alder [17] exchange-correlation form (parametrized by
Perdew-Zunger [18]) with a plane-wave energy cutoff of
12 Ry. The Brillouin zone is sampled by a special k-point
set equivalent to the 10 special k points in the perfect dia-
mond structure, except for the [100] TA mode where a
28 special k point set is used. The ion-electron interac-
tion is approximated by a soft pseudopotential developed
recently [19]. Five different displacements (0, & u, & 2u)

TABLE 1. Coordinates of representative neighbors and cor-
responding force constant matrix elements (with a plane-wave
energy cutoff of 12 Ry) for Si. Coordinates are expressed in
units of a/4 with a being the cubic lattice constant. The nota-
tions of the force constant matrix elements follow Ref. [21].

NN Coordinates Force constants (10° dyn/cm)

0 (0,0,0) aop=2.237

1 (1,1,1) a;=—0.547, gy = —0.388

2 (2,2,0) u2=—0.035, v,=0.068
§2=—0.029, 1, =0.017

3 (1,1,3) #3=0.007, v3=0.001
§3=—0.010, 23=0.008

4 (0,0,4) us=—0.013,24=0.018

5 (3,3,1) us=—0.002, vs=—0.030
8s=—0.001, A5 =0.004

6 (2,2,4) ue=—0.002, v¢=0.001
86 =0.006, 1 = — 0.000
76 =0.002,

7 (1,1,5) 17=0.000, v7=0.004
67=0.004, A7 =0.002

7 (3,3,3) a7=0.004, 7= —0.002

8 (4,4,0) ug=—10.002, vs=0.012

8s = —0.002, A= —0.008




VOLUME 69, NUMBER 19

PHYSICAL REVIEW LETTERS

9 NOVEMBER 1992

are calculated for each supercell to ensure the anharmon-
ic effect is eliminated for the calculated planar force con-
stants. We use a least-squares fit to solve for the best set
of the 31 matrix elements of the interatomic force con-
stants from 51 linear equations. The standard deviation
is less than 0.3% of the average planar force constants
calculated, indicating the consistency of the calculations
for various directions.

The phonon frequency is obtained by solving the eigen-
values of the dynamical matrix, ®(k), the Fourier trans-
form of the 6 X 6 real space force constant matrix,

D“(R) D“‘(R)J

[(D(k)] =§£’ ~ikR D*(R) D*(R)

(6)

D(R) D‘”(R)]
D(—R) D“(R)T|"

Ze—[k-R
R

where k is a wave vector. Figure 1 shows the calculated
phonon dispersion curve, including the lower-symmetry
directions X-W-L-K, compared with the experimental
data [20]. From the figure, we can see that the calculat-
ed values are in excellent agreement with experiment, ex-
cept for the zone-boundary TA modes (X and L points).
As noted by Herman [21], the flatness of the dispersion
curve at the zone boundary is the result of the longer-
range interactions. To check the real space convergence,
we have performed additional calculations for the [100]
TA mode; (1) the unit cell is increased from twelve to
sixteen atoms to see if there is any long-range interaction
contribution; (2) the TA(X) mode is calculated directly
using a four-atom cell [10] with the frequency evaluated
from both the total-energy change and forces. The re-
sults, shown in Table II, indicate that the calculated
TA(X) phonon frequencies are consistently lower than

16
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FIG. 1. Phonon dispersion of Si calculated from the inter-
atomic force constant matrices with a plane-wave energy cutoff
of 12 Ry. The experimental values [20] are shown by open cir-
cles (Dolling, 296 K) and stars (Nilsson and Nelin, 300 K).
The phonon frequencies TA(X) and TA(L) from direct frozen-
phonon calculations are marked by solid squares.

TABLE II. Comparison of TA(X) and TA(L) phonon fre-
quencies of Si calculated by different methods: direct frozen-
phonon calculation of the energy or the forces, planar force con-
stant (PF) calculation with 12 or 16 atomic layers, and dynami-
cal matrix (DM) calculation with interatomic force constants.
The energy cutoff of the plane-wave expansion is 12 or 18 Ry.
Experimental values [20] are also shown. Frequencies in THz
(10'2 Hz).

Frozen phonon Planar force

Energy Force 12-layer 16-layer DM EXP
12 Ry
TA(X)  4.00 4.00 4.10 4.01 411 4.49
TA(L) 3.12 3.12 3.06 299 343
18 Ry
TAX) 422 4.22 4.49

the experimental value, while these calculated frequencies
agree well with each other. The comparison indicates
that the lower frequency we are getting is related to the
LDA or pseudopotential method, or the cutoff of the basis
set used. It does not result from the method proposed
here for calculating the phonon frequencies. In fact, as
the energy cutoff of the plane waves is increased from 12
to 18 Ry, we obtain a better agreement with experiment
for the TA frequency at X (Table II).

We have shown above the real space convergence of
TA(X) using both the frozen-phonon calculation and a
larger unit cell. It has been well recognized that, to
achieve the flatness of the TA mode, it is vital to include
at least the fifth nearest neighbors [21]. A more recent
study [22] found the effect of adding farther interactions
to be minimal. We have calculated the force constants
up to the eighth nearest neighbors which should be
sufficient for Si. We have also checked the bulk modulus
calculated from the force constants, which is within 2% of
the value obtained directly from the equation of state.

In conclusion, we have presented a new approach to ob-
tain the phonon dispersion over the entire Brillouin zone
by calculating the real space interatomic force constant
matrices from first principles. The major advantage of
this method is that only simple supercell calculations of
the planar forces are needed. The calculation is within
the framework of the LDA and the pseudopotential
method, and hence it has the predicting power for new
materials. Although only the harmonic interaction is
considered here, the anharmonic effect can also be stud-
ied in principle by keeping higher-order terms in the
forces. The formalism is general with no restrictions on
the crystal structure or electronic structure.
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and Packard Foundations.
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