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Criticality in the Plastic Deformation of Ni3Al
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It is argued that the critical point of a nonequilibrium phase transition in the motion of dislocations re-

sults in the experimentally observed power-law creep rates in Ni3A1 and related intermetallic alloys. A

simple scaling argument is used to connect the critical exponents of the transition directly to the creep
rate. A model of dislocation motion is constructed. The exponents predicted from the model are in

agreement with those deduced from creep experiments.

PACS numbers: 62.20.Hg, 64.60.Ht, 81.40.Lm

The study of nonequilibrium phase transitions has be-
come an important part of modern physics [I]. It is ar-

gued below that the superdislocations (henceforth re-
ferred to as "dislocations" ) responsible for the plastic de-
formation in Ni3A1 and related intermetallic alloys un-

dergo a nonequilibrium phase transition. A scaling argu-
ment is used to connect the critical exponents of the tran-
sition to the mechanical properties of the alloy. A simple

creep experiment, in which the strain is measured as a
function of time for a sample subject to a constant stress,
directly measures one of the critical exponents of the
transition. A model of dislocation motion is constructed
and yields exponents that are in excellent agreement with

experimentally measured values.
Ni3Al is the prototype of a class of technologically im-

portant L12 intermetallic alloys which differ from pure
metals in that their plastic strength increases with tem-
perature [2]. (The following arguments apply to all al-

loys in this class, but for brevity only Ni3A1 is explicitly
mentioned. ) The movement of dislocations is the primary
microscopic tnechanism of plastic deformation in single
crystals [3]. The observed plastic strength increase in

Ni3Al has been linked to the thermally activated forma-
tion of cross-slip points —segments of dislocations which

cross slip from easy glide [111]planes onto [001] planes
where they are immobilized —along the dislocations [4].
As the temperature increases, cross-slip pinning becomes
more frequent, impeding the motion of the dislocations.

Paidar, Pope, and Vitek [5] have analyzed the forma-
tion of an isolated pinning point. It was found that, in or-
der to cross slip, a dislocation must have sufficient screw
character. Also, as a dislocation bows about a pinning
point, it exerts a force on the pinning point. Eventually,
this force reaches a critical value, at which the pinning
point dissolves. The energy stored in a bowing dislocation
creates a stress opposing the applied stress. If two pin-

ning points form near each other, the bowing stress
prevents dissolution of either pinning point, and the seg-
ment of dislocation between the points becomes immo-
bile.

Recently, the formation of pinning points has been in-
corporated into a simulation of dislocation motion that
accurately reproduces the experimentally observed mi-
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FIG. l. (a), (b) Simulated dislocation configurations of near
screw character (the Burgers vector b is indicated) typical of
those found below and above the critical stress, respectively.
Below the critical stress, the pinning (represented by solid
points) along the dislocation is highly correlated and the dislo-
cation advances through the lateral motion of the unpinned seg-
ments referred to as superkinks (SK). In this case, the super-
kinks move to the right. Above the critical stress the pinning is
less correlated and the dislocation moves more uniformly,
through the forward bowing of the unpinned segments. (c) The
origin of the correlations. Near any given pinning point there is
only a small region (shaded) of space within which a pinning
point can form and exhaust a dislocation segment. The pres-
ence of a pinning point forces the dislocation to bow, reducing
its velocity. The reduced velocity increases the time spent in the
pinning region and enhances the probability of pinning.

crostructure [6]. More importantly, the simulations al-
low the study of the dynamics of dislocation motion. At
low stresses, the dislocations advance in the screw direc-
tion through the lateral motion of mostly edge-character
segments referred to as superkinks [labeled as "SK" in
Fig. 1(a)], while the remaining, highly pinned segments
remain stationary. Ultimately, the highly pinned seg-
ments encompass the entire dislocation and immobilize it.
This exhaustion of mobile dislocations is proposed as the
origin of work hardening in Ni3A1. At higher stresses,
the advancement of dislocations occurs more uniformly
by forward bowing between pinning points [Fig. 1(b)l, as
envisioned in prior modeling efforts [5]. In this stress re-
gime, a mobile dislocation remains mobile for an extend-
ed time. The difference in the mode of dislocation motion
is related to the stress dependence of the correlations be-
tween pinning events. Figure 1(c) depicts the origin of

1992 The American Physical Society 2795



VOLUME 69, NUMBER 19 PH YSICAL R EV I EW LETTERS 9 NOVEMBER 1992

these correlations. A dislocation segment can be immobi-
lized if a new pinning point forms near a preexisting one.
Since cross slip can only occur near screw orientation, the
new pinning point must form within the shaded region.
At low stresses, the moving segment adjacent to a pinning

point spends disproportionately more time in the pinning

region than an equivalent segment at higher stresses,
enhancing the correlation between pinning events [6].
Above a critical stress it is no longer possible for the
correlations to create the highly pinned structure of Fig.
l (a). The changes in both dislocation structure and

mode of advancement occur rapidly with increasing
stress, suggesting a nonequilibrium phase transition.

A simplified argument yields insight into the origin of
this transition. In general, plastic strain is proportional to
the area swept out by the dislocations. To a rough ap-
proximation, the creep rate (i.e., the time derivative of
the strain measured in a creep experiment) in the low-

stress regime is proportional to the number of mobile su-

perkinks. Let the number of mobile superkinks at time I.

be denoted by N(t). Earlier modeling eA'orts [6] suggest
three processes that can change the number of mobile su-

perkinks: (i) a mobile superkink spawns an additional
mobile superkink, (ii) a mobile superkink becomes immo-

bile, and (iii) a superkink-superkink scattering event

reduces the number of mobile superkinks. The rates of
processes (i) and (ii) are independent of the number of
superkinks. The rate of process (iii) is proportional to the
number of superkinks (the rate of superkink-superkink

collisions scales inversely as the average superkink sepa-
ration). The equation describing the time dependence of
the average number of mobile superkinks is

dA(t) ' dt'
y(t) — =, da an(a, t'),

dg "I g "0 (3)

where A(t) is the total area swept out by all of the super-
dislocations at time t.

It is postulated that, at the critical point, the distribu-
tion of event sizes is scale invariant:

creep rate is zero and above the critical stress, a nonzero
constant. At the critical stress, the creep rate displays a
power-law dependence on the time (deemed a "power-law
creep rate, " not to be confused with "power-law creep"
which is used to characterize the stress dependence of the
creep rate). If one considers N(t) to describe the number
of mobile dislocations instead of superkinks, this argu-
ment suggests that criticality may also be the source of
the ubiquitous power-law creep rates in pure metals [8].
A more precise argument for Ni3Al is presented in the
following.

In Ni3Al, the quantity controlling the creep rate is the
number of mobile dislocations. As stated above, for
stresses below the critical stress, all dislocations eventual-

ly become immobile. Consider a crystal with a large
number of dislocations. Imagine the crystal is pre-
strained in the low-stress regime until it no longer creeps.
The stress is then incremented and held fixed. As a result
of the increase in stress, immobile dislocations are now

mobile, move by the lateral motion of superkinks, and

eventually become immobile. Let n(a, t)dadt be the
number of dislocations which sweep out an area between
a and a+da before arresting at a time between t and
t+dt. Since the strain is proportional to the total area
swept out by all of the superdislocations, the creep rate

) (t) is proportional to

N(t) =[p ~N(t)]N(t),
kn(a, t ) =n(k' ak't), (4)

where the first term in brackets on the right is the net
rate of processes (i) and (ii), and the second term is the
rate of process (iii). Superkink-superkink collisions can
never increase the number of superkinks; m is always pos-
itive. Processes (i) and (ii) combined can either produce
a net decrease or increase in the number of mobile super-
kinks (depending on the applied stress), so p can have ei-

ther sign. If p &0, the steady-state creep rate becomes
proportional to p/co [7]. If p & 0, the number of mobile

superkinks approaches zero, as does the creep rate. The
stress at which p =0 is the critical stress for this non-

equilibrium phase transition. At the critical stress, the
number of mobile superkinks as a function of time be-
comes

N (t ) = ( I /No+ Mt ) (2)

where Np is the initial number of superkinks. In the limit

that Np becomes infinite, the creep rate becomes propor-
tional to t

The above heuristic argument establishes several
salient features of the proposed nonequilibrium phase
transition. Below the critical stress, the steady-state

where a and 6 are the scaling exponents. Multiplication
of both sides of Eq. (3) by X and using the identity in Eq.
(4), one can show that at the critical point j (t) is scale
invariant:

where A=X'+ '. Choosing A@'+ ' =t ' in Eq. (5)
shows that, at the critical point, the creep rate has a sim-

ple power-law dependence on time:

)(t)—t ', with A= —(I+2a)/6. (6)

The experiments of Thornton, Davies, and Johnston,
performed in 1970, directly measured power law creep-
rates. Determining the sealing exponents of the transition
is equivalent to predicting the algebraic form of the creep
curve. Furthermore, a power-law creep rate is the signa-
ture of the scale invariance of the distribution of exhaus-
tion events independent of the underlying exhaustion
mechanism.

A remarkable feature of critical exponents is that they
do not depend on the precise microscopic nature of the in-
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teractions, but instead are determined by general sym-

metries. In order to determine the exponents of the pro-

posed nonequilibrium phase transition in Ni3Al, the fol-

lowing simple model of dislocation motion was developed
to approximate the superkink processes (i)-(iii) described
above. The dislocation is assumed to consist of L seg-
ments, labeled by the index i. Each segment i rests at a
position y;, restricted to be an integer. At each step of
the simulation, the segments advance by one unit,

y; y;+1, with an advancement probability p;. The p;
depend on the relative positions of the segments, as out-
lined below.

The p; are determined by analyzing (qualitatively) the
dynamics of superkink motion. Figure 2 contains the
three segment configurations which enter the model.
(The black dots represent dislocation segments, not

pinned points. ) A segment does not advance if it does not
have sufficient edge character. In this simple model, the

edge character of a segment is proportional to its slope.
A segment is immobile if the magnitude of its slope is less
than 2. For this reason, the configurations labeled
(a)-(f) are immobile, and p; =0. The configurations la-
beled (g) are mobile (p; =1) because their slope is 2.
Configurations (h)-(k) represent pinned segments. A

pinning point dissolves when its adjacent segments exert a
force larger than a critical dissolution force. The dissolu-
tion forces acting on segment i are given by y;+~ —

y; and

y; —
~

—y;. If either of these quantities is larger than 2,
the pinning point dissolves. The advancement probabili-
ties of configurations (h)-(k) are, therefore, 1. Config-
urations (1)-(o) represent the upper portion of a super-
kink. [Any superkink is composed of one configuration

p; =max[0, 1
—e/(r —x;)], (7)

where x; is the circular curvature at segment i, calculated
by replacing the appropriate derivatives by their discrete
counterparts. Expression (7) reflects the fact that a bow-

ing dislocation moves more slowly, and spends more time
in the pinning region [Fig. 1(c)]. The parameter 8 in-

creases with temperature, reAecting the fact that pinning
is more frequent.

The following procedure is used to calculate the ex-
ponents. An initial random configuration is generated us-

ing the configurations of Fig. 2 labeled (a)-(f). A seg-
ment is chosen at random and advanced by one unit. The
dislocation advances according to the rules outlined
above, until its motion ceases. The advancement time
and the total area swept out are recorded, and the process
is repeated, starting from the exhausted configuration. In
this manner, the distribution of exhaustion events n(a, t)
is obtained.

Having obtained the distribution of exhaustion events,
it is possible to determine the critical exponents, and, in

particular, the creep-rate exponent h, . In practice, h, is
obtained through the integrated quantities n(t) and n(a),

selected from the configurations (h)-(k), any number of
configurations (g), and a configuration selected from (1)
to (o).] The advancement of a segment near the upper
edge of a superkink depends on two parameters: the ap-
plied stress r and a parameter reflecting the temperature
6. The bowing stress, which is proportional to the local
circular curvature of the dislocation, opposes the applied
stress. The advancement probabilities for configurations
(1)-(o) are given by

n(t) = dan(a, t) and n(a) = dtn(a, t). (8)

(a)

(c)

Equation (4) implies that n(t) and n(a) also obey simple
power-law relationships. Measurements of their ex-
ponents are used to determine the scaling exponents a
and 8 and, in turn, A. It is observed that n(t) and n(a)
can be fitted by the Ornstein-Zernike form for the corre-
lation function [9],

n(t) -t ~e ', n(a) -a ~e (9)

y
2
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1 2
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FIG. 2. The three point configurations which enter the mod-
el. Each dislocation segment is represented by a solid circle.
The advancement probability for the central segment in each
configuration depends on the location of its neighboring seg-
ments, as described in the text.

The fits produce the exponents required for the calcula-
tion of h„and also allow estimation of the critical stress
through the observed power-law divergences of tp and ap
as a function of the applied stress, r.

Figure 3 contains the creep-rate exponent calculated as
a function of r for 8=50, I.=100. The critical stress for
these conditions, as estimated from f p, is r =100. The in-
set of Fig. 3 contains the results obtained from a
reanalysis of the data of Thornton, Davies, and Johnston
[2]. Note that both the calculation and the experiment
have stress-dependent creep-rate exponents that are near
1 over a range of lower stresses. As the stress is in-
creased, the creep-rate exponent decreases to 6, = &, im-
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FIG. 3. The creep-rate exponents as a function of applied
stress, as predicted by the model, and measured by experiment
[2] (the inset). Note that the model accurately reproduces the
trend in the creep-rate exponent as measured through experi-
ment. The experimental data were taken at three temperatures:
25'C (solid squares), 399'C (solid circles), and 626'C (solid
triangles). The results of the model were obtained for a con-
stant "temperature, "e =50, and L =100.

plying a simple power-law dependence on time. The ob-

served variation of the exponents with stress is not com-

pletely understood, but may be related to the fact that the

system is not always "near" the critical stress. The best
estimate of 6 (from the model) at the critical stress is

8, =0.56 ((=1.26 and P=1.37). The estimated statisti-
cal error in h, is below 0.01.

It should be noted that Fig. 3 compares the results of
experiments performed at three temperatures to the re-

sults of the model for one temperature. The authors of
Ref. [2] attribute the variation of 6 to a temperature
dependence. The model presented here suggests that the
variation of h, stems from the imperfect balance between

the thermally assisted pinning of the dislocations and

their stress assisted unpinning. The implication is that

creep tests performed at constant temperature should

display similar trends in the exponents. Further experi-

ments are needed to elucidate this point.
In conclusion, it has been argued that the dislocations

in Ni3A1 and related alloys undergo a nonequilibrium
phase transition from a phase in which a mobile disloca-
tion ultimately becomes immobile, to a phase in which a
mobile dislocation remains mobile for an extended time.
The critical exponents of this transition are related,
through very general arguments, to creep measurements.
It is demonstrated that criticality is the origin of power-
law creep rates in Ni3A1, and suggested that criticality
may also explain the power-law creep rates observed in

pure metals. A simple model describing dislocation
motion yields creep-rate exponents in remarkable agree-
ment, in both qualitative trends and quantitative values,
with available experiments.
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