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In previous works we have defined statistical equilibrium states for two-dimensional incompressible
Euler equations. %'e establish here evolution equations governing the relaxation of the system towards
these equilibrium states.
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It is well known that 2D slightly viscous flows tend to
form coherent structures. In previous work [1-6], we

have developed an equilibrium statistical mechanics
which aims to predict and describe these structures as
steady states for 2D incompressible Euler equations. (An
equivalent theory, using a less rigorous mean-field ap-
proach, has been derived independently by Miller [7]. A

comparison with Miller's approach is made by Robert
[3].) Actually, the resolution of the stationary equation
which gives the equilibrium states is a complex program
since a wide range of bifurcations may occur [5,6,8].
Furthermore, the Lagrange multipliers arising as un-

known parameters in this equation are not easily ex-

pressed in terms of the constants of the motion of the inI-

tial datum.
We establish here a set of time-dependent equations

which govern the relaxation of the system towards its

equilibrium state. Our aim is twofold. First, it is to pro-
vide a convenient algorithm to reach the equilibrium state
(or the equilibrium set when it does not reduce to a

unique state) corresponding to a given initial datum.
Second, it can be used as a sub-grid-scale modeling: It

might describe the complex evolution of the flow without

having to handle a detailed description of the small

sc;iles. Our relaxation equations are of' a diffusion-

convection type. The main difference from Navier-Stokes
equations is that they are designed to conserve the energy
and all the constants of the motion of Euler equations.
To close the set of equations we propose a variational

principle for the diffusion fluxes: For a given rate of en-

tropy production t.he system tends to minimize the
diITusion energy of the fluxes (or equivalently I'or a given

diffusion energy it tends to maximize its entropy produc-
tion). Although this approach yields an eNcient way to

reach the equilibrium state (we prove that if the solution
converges towards some state, it is indeed a CJibbs state),
we are not a priori guaranteed to mimic the actual dy-
narnics of the Euler flow. Of course this issue has to be

carefully tested.
We start here with Euler equations in an open, bound-

ed, simply connected and regular domain A of the plane.
I et u(!,x) be the velocity field; the incompressibility con-
dition Is solved by introducing the stream function
!tr(t,x) We consider the scalar vorticity c!!(ts.x) = (V

xu) k, with k the unit vector normal to the plane, and
~rite the Euler system

co, +V (cou) =0, co(0,x) =cop(x),

u=Vx(tttk), co= —V y, tl!=0on 80.
For any bounded initial vorticity cop(x), the system
(1),(2) has a unique bounded solution co(t, x) [9]. We
assume here that the initial condition is made of patches
with n uniform vorticity levels a, (but generalization to a

continuous vorticity distribution is straightforward in the
limit n- ~&. All the known constants of the motion in

our domain are the following functionals: the energy

(I)
(2)

s(p) = —gp, lnp, ,

under the constraints (i)

g p,:i(x) = I, 1or all x .

F, Ipj =„t p;(x)dx=l&'I,

f

E
I
g a;p;(x) =E Icopj .

L'[coj = -' „u'dx= -'
tl codx;

n &o

the area IO'I of each vorticity patch 0' with uniform
value a;; if 0 is a disk 8(O, R), the angular momen-
tum M[coj with respect to 0, M[coj =fuxxu(x)dx
=[-,' f, (R' —x')co(x)dxlk.

After some evolution, the solution of the Euler equa-
tions becomes in general extremely complicated. Instead
of a detailed description of the vorticity field, we intro-
duce the macroscopic variables p;(x), i = I, . . . , n, which

give, at each point x, the probability of finding the value

a;. It has been proved [2,3] that an overwhelming major-
ity of a11 the vorticity fields with given constants of the
motion are close to a macroscopic state (the equilibrium
state)„or to a set of such states (the equilibrium set).
These states are obtained by maximizing the mixing en-

tropy

SIpj =„s(p)dx, p=(pi(x). ,p„(x)),
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It was shown that this problem, to which we will refer
as (V.P.) in the following, always has a solution (possibly
not unique). If p* =(p*, . . . ,p„"') is a solution of (V.P.)
such that each function p;*(x) is continuous and strictly
positive on 0, we can show that there exist Lagrange
multipliers a~, . . . , a„,P such that

exp[ —a; —Pa;y*(x)]
4

Z(y*(x) )
where Z(iti') =g; exp( —a; Pa—; y), and y* is the stream
function associated with the locally averaged vorticity
co* =g;a;p;*. As a result of the relationship g;p;(x)
=1, the functionals Fi, . . . , F„give only n —

1 indepen-
dent constraints, and we can always take a„=0. Thus to
find the equilibrium states, we must solve the nonlinear
elliptic equation [10]:

1 d—Viiti = —— lnZ, @=0on 80 .
P dy

It always has a unique solution when p is greater than
some negative value P„but when —P is sufficiently large,
bifurcations to multiple solutions generally occur [6,8].

We shall assume that during its evolution towa."ds a
final equilibrium state, the system can already be
described in terms of a set of local probabilities
pi(t, x), . . . ,p, (t,x). In other words, the system has al-

ready undergone fine-scale vorticity oscillations, and the
velocity field u(t, x) is obtained by the integration of (2),
where to(t, x) is replaced by the locally averaged vorticity
to(t, x) =P;a;p;(t, x). The vorticity patches are trans-
ported by this velocity field, and we suppose that in addi-
tion they undergo a diffusion process, so that the conser-
vation equation for each vorticity probability can be writ-
ten

&=1, . . . , n,

(s)

(p;), +V (p;u+J;) =0, i =1, . . . , n,
J; is the diffusion ttux of the patch i We im. pose the
boundary condition J;.n =0, so that the total area occu-
pied by each patch is conserved. We can assume
(without loss of generality) P;J;=0, i.e., the locally
averaged velocity of the fluid is u(t, x). Denoting the vor-

ticity flux J„=P;a;J;, we deduce from (6) an equation
for the locally averaged vorticity

to, +V (tou+J ) =0, (7)

Since the velocity field is entirely determined by the
field G, the total energy is

E[to] = —,
' ytodx.&n

In other ~ords we neglect the diff usion energy Ed
=

2 f„g(J;/p;)dx, associated with the diff'usion trans-
port, in front of E[tdo. Let us compute the rate of change
of energy in the convection-diff'usion process (6). An in-
tegration by part gives Efco] =fii pro, dx. Using (7), we
find

E= Vy Jcodx.~o

We need also to compute the rate of entropy production

gs;x(p;), dx= — QVp; (J;/p;)dx (]0)

where s; =Bs/Bp; = —
1
—lnp;.

To get a closed set of equations, we need to relate the

fluxes J; to the probability fields p;. The usual procedure

is to assume that a local equilibrium is achieved at each

time, and to impose a linear relationship between diff'u-

sion fluxes and gradients of the local thermodynamic in-

tensive parameters (like temperature), such that the sys-

tem is driven towards the final equilibrium state with

monotonous increase of entropy. In our case it is difficult

to define a local equilibrium. In short, this is due to the

fact that the entropy density s(p) is a function of the p s

alone. There is no local internal energy, so that the pa-

rameter P is not locally defined. This is why we shall

make the hypothesis that the system is near the global
equilibrium. We present first the method in the case with

only two initial vorticity levels a and 0. The state of the

system is then completely determined by the probabil-

ity p~(x) of finding the level a, or equivalently by the lo-

cally averaged vorticity co(x) =api(x). At equilibrium,
s' —Py=ai/a is a constant on 0 (s'=ds/de); this is just
equivalent to (4). Thus, near equilibrium, this quantity

wi11 have only weak gradients. Since there is no internal

energy, the relaxation towards equilibrium is only con-

trolled by the diffusion of vorticity. Therefore we can
write a linear relationship between J„and V(s' —Py). As

a simple approach, we make the strong assumption that
this relationship is local and isotropic: J„=A(x)V(s'
—Py). But Vs = —Vco/[to(a —to)], and to avoid singu-

larities A(to) must vanish for to =0 and to =a. Then the

simplest choice is A(to) =to(a —to)A, where A is a con-

stant. The parameter P is determined by the conservation

of energy, using (9), which yields

P = — Vy Vtodx „ to(a —to)(Vy)'dx. (11)
The growth of entropy (10) implies that A )0, and we
finally obtain [11]our evolution equations for to:

to&+V (cou) =AV to+APV [(a —to)toVy],

[Vto+P(a —to)toVy] n=0, on 80.
This is similar to the Navier-Stokes equation but the usu-
al diffusion term is corrected to exactly satisfy the energy
conservation, while ensuring a monotonous increase of en-
tropy. This correction is nonlocal in terms of the vortici-
ty, which is not surprising since the vorticity variations
inhuence velocity over long range.

The same method could be used for the case of n vorti-
city levels, but we are not able to determine the corre-
sponding matrix of diffusion coefficients by pure symme-
try arguments. We instead reformulate the problem and
propose a variational principle to determine the Auxes J;.
We will make the following hypothesis:

(H1) For any given state p = (pi, . . . ,p„), the rate of
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entropy production 5 when the system is at p is a func-
tional of p; we will write S =C[p].

(H2) The system distributes its fluxes in order to mini-
mize the diffusion energy. That is, the actual fluxes J,*
will satisfy the following variational problem (V.P. ):

E, IJ*, , . . . , J„*]=minE, [J,, . . . ,J„],
under the constraints

(Cl) S=C[p], (C2) g J; =0, (C3) E =0.
This variational problem always has a unique solution

3~, . . . , J„. There are two Lagrange multipliers A, B
such that for any variations SJ; satisfying PBJ; =0, we
have BEd =A BS+Bb'E. A straightforward calculation
then gives that J;*/p; —AVs; —Ba;V&tc=F(x), for all i
The function F(x) is calculated thanks to the relation
g J,* =0, and we get

J,* = —A Vp; B(G a;—)p; V &tc—. (13)
The constants A, B can be now calculated thanks to the
constraints (Cl) and (C3). The conservation of energy
(C3) gives the ratio P =B/A,

r

P= —
J V&tc Vcudx „ga p; —co' (Vy)'dx. (14)

From the strict convexity of the function a a, it fol-
lows that (Pa;p;) ~ Pa; p;, with equality only when all
the p; are equal to 0 or l. It follows that P is defined for
any mixed state. The entropy condition (Cl) then relates
A to the entropy variation C[p] and gives that A must be
of the same (positive) sign as C[p]. Finally, let us sum-
marize our relaxation equations for an n-level vorticity:

(p, ), +V (p;u+J;*) =0, i =1, . . . , n,
J,* = —A[p][Vp; —

P(cL&
—a;)p;Vy], with J,* n=0 on c)Q,

u =VX (&tck), co =ga~p; = —V &ic, with &tc=Oon t)0.
(i5)

In the particular case of a vortex patch with vorticity a
surrounded by irrotational fluid, (15) and (14) reduce to
our previous results (12) and (11). Notice that we do not
need to make an a priori hypothesis of local equilibrium
or of linear dependence of the fluxes on the forces. The
linearity is merely a consequence of our variational prin-

ciple [12]. In the general case of a continuous initial vor-

ticity distribution, (15) is straightforwardly generalized

by replacing the finite set p;(t, x) by the continuous vorti-

city distribution p(a, t, x).
In the particular case 0 =B(O,R), we must also take

into account the constraint given by the angular momen-

tum. Then the fluxes have to satisfy the supplementary
condition f«x J dx=0. Thus the optimal fluxes J,* can
be written

J,* = —A [Vp; —(cu —a;)p;(PV&tc+ yx)], (i 6)
where P and y are determined by the linear system

P J 8 V&tc dx+ y J 8 x V&tcdx = —„V&tc Vc«dx,
(i7)

P 82x Vydx+y 82x2dx= ~x Vmdx,-
2778

where 8 =g; a; p; —co . We easily show, using the
Schwarz inequality, that the determinant of this system is
always & 0 (we suppose that some mixing has occurred,
so that 8 & 0 everywhere), and the solution for P and y
is therefore unique, except in the degenerate case of a
solid body rotation. In the case of a channel with period-
ic boundary conditions, the linear momentum is con-
served instead of the angular momentum [6], and this
case can be treated similarly.

The link with the equilibrium theory is confirmed by
the following proposition: Let us suppose that the solu-
tion p;(t, x), i =1, . . . , n, of the system (15) converges
(in a strong enough sense) when t goes to infinity, to-
wards a stationary state p;(x), such that p;(x) & s & 0,
for i =1, . . . , n. Then p;(x) is [13] a Gibbs state (4)
with P=limP(t), t ~. To prove this proposition, we
write from (10) to (13)

S= —
g g —[Vp; —P(c0 —a;)p;V&tc] J,*dx

0
I P.

S= g —[Vp; —P(co —a;)p;Vy] dx.~o; p,.

I ' I ' I I & I & I & I

. .I
I +4~I
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FIG. 1. The vortex merging obtained by our model equations
(in a square domain with side 3.14, resolution 64 grid points,
A =l0 '). The two initial spots have a vorticity a 1, with

smoothed edges to avoid initial vorticity discontinuities. (a)
Vorticity contours with interval O. i. (b) Time evolution of the
angular momentum (M), energy (E), entropy (5), enstrophy
(D). (c) Comparison of the final radial vorticity profile (A)
with the result from Navier-Stokes equations with the same
initial condition (B, resolution 256, viscosity 3x10, time
i =400).

QP(c« —a;)V&tc J,*dx,
j

but this last term is zero, due to the fact that g; J,* =0
and f„Vy J„*dx =0.

Thus it follows that
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In the limit of a steady state, S vanishes so that each
current J,* vanishes, and by subtracting two terms we get
Vln(p;/p„)+p(a; —a„)Vt)t=0, i =1, . . . , n —l. It im-

plies that In(p;/p„)+P(a; —a„)ttt has a constant value
—a; on Q. Then, using gpt(x) =1, we get indeed the
Gibbs state (4).

As an example of an application, we compute the
merging of two vortices (Fig. 1). We use a pseudo-

spectral scheme, and the computation domain is square
for convenience (with periodic boundary conditions in a
twice wider domain obtained by symmetry with respect to
the wall). However, in order to simulate an infinite

domain, we also impose the conservation of angular
momentum. Therefore we solve (6) with a single nonzero
vorticity level a, with diffusion current (16) and condition
(17). The energy and angular momentum are indeed

constant, while entropy is increasing and enstrophy

f neo dx is decreasing [Fig. 1(b)]. The viscosity
=10 results from an adjustment: With much lower

values (0.2&&10 ), vorticity structures at the grid scale
are not sufficiently damped and numerical errors appear
(in particular entropy fluctuates). For high values of A,
the vorticity diffusion is too strong, and the merging
occurs too quickly. Nevertheless the final state, a steady
axisymmetric vortex, is independent of A: It is the equi-
librium state corresponding to the initial energy and an-

gular momentum. Its radial vorticity profile is found
in good agreement with a direct computation of the
Navier-Stokes equations at high resolution and weak
viscosity [Fig. 1(c)].

In conclusion, we have proposed a set of evolution
equations which provides a convenient algorithm to com-

pute the equilibrium states corresponding to a given ini-
tial datum. Besides this fact, these equations can be con-
sidered as a small-scale modeling of the Euler flow. They
have the property of smoothing the vorticity fluctuations
at small scales, but unlike ordinary viscosity, they con-
serve all the constants of the motion of the Euler system
and can drive the system towards nontrivial organized
structures at long times. The irreversibility of this inodel
is expressed by the monotonous increase of the mixing en-

tropy. The smoothing effect can be adjusted by the
viscosity coefficien A, according to the spatial resolution
of the explicit scales. Of course we have made strong as-
sumptions on the diff'usion process, and this is only a first

step towards a more sophisticated modeling of the Euler
flows.
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the computations.
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