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Bubbles in a first-order electroweak phase transition are nucleated with radii Ro and expand with ve-

locity v. If v is subsonic, a bubble becomes unstable to nonspherical perturbations when its radius is

roughly 10 Ro. These perturbations accelerate the transition, and the eA'ective velocity of bubble growth

rapidly becomes supersonic. The transition should subsequently proceed spherically via detonation. If
for some reason the onset of detonation is postponed, the surface area of the bubbles may be enhanced

by 105. We discuss consequences for electroweak baryogenesis.

PACS numbers: 98.80.Cq

There has been much interest in the dynamics of a pos-
sible first-order electroweak phase transition (EWPT) re-
cently. The motivation is clear: One of the fundamental
problems in particle physics and cosmology is the origin
of the baryon asymmetry of the Universe (BAU). While
C and CP violations [1], as well as baryon-number-
violating instanton effects [2], have been known to exist
in the standard model for quite some time, only recently
has it been suggested that the rate for baryon-number-
violating interactions may become appreciable at high
temperatures [3]. If the EWPT is first order, the third of
Sakharov's [4] criteria for baryogenesis, out-of-equil-
ibrium processes, may also be found in electroweak (EW)
physics. Thus, the BAU may be explained in the era of
the Superconducting Super Collider.

In the standard picture of a first-order EWPT, spheri-
cal bubbles are nucleated with microphysical radii Rp—10 ' cm and then expand spherically with velocity v

to macroscopic radii R~„-10' vRO before they collide.
The bubble-wall velocity v is still uncertain, but recent es-
timates suggest that a wall may propagate subsonically
(i.e., as a deflagration front) [5]. In this Letter we show
that shape instability of the bubble wall rapidly causes
the propagation to become turbulent and proceed more
quickly, and probably instigates the onset of detonation;
then the bubbles expand spherically to fill space at super-
sonic velocities.

A deflagration front is unstable to perturbations with
wavelengths in the range A,, ~A, ~A, m» where A,, -Rpv
is set by the surface tension in the wall [6-8], and X,„,
which is proportional to the radius R of the bubble, is set
by the underlying expansion of the bubble [7]. After the
bubbles are nucleated, they expand spherically until A, ,„
reaches A.,; then R;„ t —100' Rp and hydrodynamic in-
stabilities set in. The subsequent bubble shape will be
roughly spherical; however, instead of a smooth surface,
the wall is highly wrinkled with distortions that enhance
the surface area of the wall and thereby accelerate the

transition. Although the details are far from understood
(in any fluid dynamic system), the onset of turbulence
and corresponding acceleration of the transition should
result in a detonation front shortly after the bubbles are
nucleated, when roughly a fraction 10 ' of the Universe
has been converted to the low-temperature phase. On the
other hand, if for some reason the transition continues as
a deflagration, then the surface area of the walls is
enhanced by 5 orders of magnitude by the time the bub-
bles percolate. In either case, the dynamics of the transi-
tion assumed in models where baryon number is produced
in a first-order EWPT could be significantly altered.

We limit ourselves to the case where the transition
occurs at temperatures near the critical temperature T„
the latent heat is small compared to the thermal energy
density, and v«1; under these assumptions the calcula-
tions simplify considerably. Such conditions are possible
in the standard model [5]. We feel that a more general
analysis should result in similar conclusions. We neglect
the expansion of the Universe, since the time scale for the
EWPT is much smaller than the expansion time scale
[5,9].

First we review some results from the theory of corn-
bustion of relativistic fluids [10] in the case where fluid
velocities are nonrelativistic. Consider a planar interface
in the y-z plane that propagates in the —x direction.
Then in the rest frame of the wall, matter in the sym-
metric phase enters the interface with a velocity v], and
matter in the broken-symmetry phase leaves the interface
with velocity v2. Conservation of energy and momentum
across the interface leads to the conditions

w]v] =w2I. 2 and p] =pp,

where w =e+p is the enthalpy density, e is the energy
density, and p is the pressure. Throughout, the subscript
1 refers to the symmetric phase and the subscript 2 refers
to the broken-symmetry phase.

The e; and p; may be obtained from finite-temperature
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field theory. Near T, the eff'ective potential may be writ-
ten [5,9, 11] as

V(y, T) = —,
' y(T —To)y —,

' —aTti + —') y

where p is the Higgs field, To =(y/k)po, go=250 GeV is

the Higgs vacuum expectation value, and a, c, and y are
parameters that depend on the 8, Z, and top-quark
masses, and on the Higgs structure of the theory. The
critical temperature T, is defined as the temperature at
which there exists a second minimum of V degenerate
with the minimum at the origin; for the effective potential
above, T, = To/(I —

9 a /yX, ) [9].
Although the difference in free energies B(T) between

the two phases is in general a complicated function of T,
if the transition occurs near T, then

B(T)= (L/4) [I —(T'/T, )]

where

L = —7; (r)B/it T )
~ T = (4a y/9g ) I' T

(wv )' = —,
' a(p )

—p2), (9)

where a is a fudge factor, 0 ~ a ~ 1, and a =1 in case the
enthalpy flux is the blackbody energy flux. (Our final re-
sults will not depend on a.) Equating Eqs. (7) and (9)
gives us our fourth boundary condition.

If nontrivial solutions that satisfy Eq. (5) and the
boundary conditions can be found for some cu &0, then
there are growing modes, and the wall is unstable to
small perturbations. To satisfy the equations of motion
and the boundary conditions, at must satisfy [8]

Requiring that the tangential velocities on both sides be
equal leads to

,', +,ax,/ay =,', +,ax,/a) .

We make the ansatz that the enthalpy flux across the in-

terface is proportional to the net blackbody energy flux
across the interface. Then the perturbed enthalpy flux is

[8]

is the latent heat of the transition [9]. This leads to the
rather simple equation of state (which mimics the QCD
bag model),

2 ok 3

to (vi+vz)+2coviv2+ k (v) —v2)+
W] V]

v]v2 0.

(10)

+v V p'+wc, V v'=0, +v V v +—Vp'=0,l

t

(5)

where c, =I/J3 is the speed of sound. There are four
boundary conditions on the discontinuity that the per-
turbed quantities must satisfy. The first,

8
P] =P2 0

2 2 XI,2 gE2

follows from Eq. (I) and includes the effects of surface
tension and finite mass density of the wall; these two

eAects favor a flat surface. The boundary condition on

(wv )' (to lowest order in v
~

and v2), from Eq. (I), is

w[ (v f 8xf/8t ) =w2(v„'2 —8xI/8t ) (7)

p ~ (T) = [w ~ (T) —L]/4, e ~ (T) = [3w ~ (T) +L]/4, (3)

p2(T) =w2(T)/4, e2(T) =3w2(T)/4,

where w
~ (T) =a

~ T and w2(T) =a2T, a
~
=a2-100,

and a~ —a2=L(4T, ) ' (see Ref. [9]).
We now study the hydrodynamic stability of a spheri-

cal bubble to small nonspherical perturbations. For dis-
tortions with k «R, it is valid to treat the wall as a planar
interface. The stability of a planar front for combustion
of a relativistic gas was recently discussed by Link [8].
Consider a small perturbation to the planar discontinuity
of the form x/=dexp(iky+tot). This distortion in the
wall surface will be accompanied by perturbations to the
velocity and pressure. If v and p are unperturbed quanti-
ties, then the perturbations p' and v' must satisfy [8]

If v2 & v
~ (i.e., if the phase transition proceeds via

deflagration), then Eq. (10) has a positive root for wave

numbers k ( k, = (v2 —
v

~ )w ~v ~/cr, and there are growing
modes. For larger wave numbers the system is stabilized

by surface tension.
From Eqs. (I), (3), and (4), we find v2 —v~=(L/

w~)v~, thus the wall is unstable to small perturbations
with

X&k, —=k, '=rJ/Lv('.

In the limit of small supercooling the surface tension is

given by cr=(2 t a /3 1 t )T, [9]. Determining v~ is

much more difficult and requires an investigation of the
microscopic interactions of the particles in the thermal
bath with the advancing wall. Recent estimates suggest
that for the minimal standard model, the wall velocity

may be in the range 0.015 v~ +0.3 [5]. Note that X,.
—Rov ~

—10 ' cm (for v ~
-0.1).

As long as X«R, the analysis assuming a planar inter-
face should be valid; however, for X-R, one should take
the expansion of the bubble into account. As the bubble
expands, the wavelength of the perturbation increases. I f
the amplitude of a perturbation grows more slowly than
the wavelength, then the distortion is smoothed out in

time. For our case of a weak transition, 8=—(v~ —
~ 2)h ~

=L/w —0.01((1, the growth rate for an instability with

a large k is found from Eq. (10) to be co=6v~k/2, while

the growth rate for the bubble is roughly v~/R. For a
perturbation to be unstable it must have k & 2/R8, while

perturbations with X &
A, ,„=RB/2 will be stabilized. Al-

though this derivation is heuristic, for 6«1 it reproduces
the results of the exact analysis for the case of spherical
combustion of a nonrelativistic gas, and it should be a
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good approximation in the case of a slowly moving rela-
tivistic gas as considered here. So, perturbations with

A,, will be stabilized by surface tension, and those with
k) X,„will be stabilized by the growth of the bubble.

In the standard picture of a first-order EMPT, bubbles
are nucleated with radii Rp-cr/L and then grow spheri-

cally with velocities v until the bubbles percolate. The ra-
dius of the bubble at this time is (again, assuming typical
parameters [9]) R~„,-10 v(Mpi//T )T —10 vRp.
On the other hand, when A. ,„reaches A,„R;„,i =ow
/L v =100v Rp, at this point the bubble becomes un-

stable to nonspherical perturbations. Since R~„ is many
orders of magnitude larger than R;„„the perturbations
have plenty of time to mature and the standard picture of
bubble evolution may be drastically altered.

If the bubble volume is V, the bubble will look some-
what spherical with a nominal radius R given by V
=

& zR; however, instead of a smooth surface, the wall

is highly wrinkled on scales k, (A, (k,„, and the surface
area of such a bubble is actually much larger than 4zR .
Perturbations to the fluid Aow accompany those in the
bubble surface, so that the normal flow velocity of fluid

across the interface is v i at every point on the surface [cf.
Eqs. (7) and (9)]; therefore, the rate of the transition is
enhanced. A similar situation arises in supernova theory,
where the burning of a carbon-oxygen white dwarf
proceeds via deflagration and the rate at which burning
occurs is proportional to the surface area of the wrinkled
Aame [12]. The surface area is enhanced roughly by a
factor

e

surface area ~max

4nR

i D-2

(12)

where the fractal dimension D [13] is some number be-
tween 2 and 3 but most likely near 2.6 [12]. The efl'ective

velocity v, ir
—=dR/dt at which a sphere of comparable

volume to the bubble would expand becomes

veir (~maxAc ) v 2

Although the exact fractal dimension is uncertain, the
qualitative form of Eq. (13) is correct; v, ir might differ
from our estimate by an order of magnitude or so, but
this has little effect on our conclusions. There is a possi-
bility that once the perturbation goes nonlinear (i.e., its
amplitude becomes comparable to its wavelength) it be-
comes stabilized and the resulting flow is not turbulent
[7]. However, in this case, the wall would still be wrinkly
on length scales from A,, to km, „. The resulting surface-
area enhancement and v,g would still be comparable
to those given in Eqs. (12) and (13). Shortly after insta-
bilities set in, the transition accelerates and when R

A. 8' v i Rpv 8 ' «R~„, v,g becomes su-
personic. At this point only a fraction (R/R~„)—IO ' (for vi-0. 1) of the Universe has been convert-
ed to the new phase. Therefore, if baryogenesis occurs at
the EWPT, it takes place after v,g becomes supersonic.

The inost likely scenario is that when v, ir increases past
c„a detonation wave sets in. Simply stated, the reason is

that the deflagration front is preceded by a fluid flow, and
it is hard to see how the appropriate fluid flow can be
maintained in front of a deflagration wave itself moving
supersonically. In the frame of the deflagration front, the
flow velocity of fluid into the interface is smaller than the
flow velocity of fluid out of the interface (i.e., v2) vi).
In the "rest" frame of the Universe, the fluid is at rest far
away from the transition; furthermore, by symmetry ar-
guments, the fluid inside the bubble must be at rest.
There is a piston efl'ect as the wall pushes the fluid out-
side the bubble with a speed v2 —v|=8vl. A precom-
pression shock precedes the deflagration front and ac-
celerates the fluid which is initially at rest, radially out-
ward to a velocity bvi [10]. If the wall is distorted and
the transition is accelerated, the wall pushes the fluid out-
side the bubble with a velocity near Sv, ir. Since Sv,a «1,
only a weak shock is needed. Weak shocks travel at ve-

locities only slightly larger than c, [14];once vea
)c„ the

deflagration front will merge with the shock to form a de-
tonation wave. Although the exact mechanism for onset
of detonation from deflagration is still under investigation
in fluid systems and is not entirely understood even in the
nonrelativistic case [7,15], the onset of detonation from a
shock preceding an accelerating turbulent deflagration
front is observed in laboratory experiments [7], and ap-
pears in the theory of type-Ia supernovae [15]. In order
to satisfy the hydrodynamical equations of motion with
the boundary conditions that the fluid far from the bub-
ble as well as at the center of the bubble be at rest, the
Chapman-Jouget condition must be satisfied, and the
bubble expands at a velocity v =Jl/3+ J2b/9 (for 8«1)
slightly larger than c, [14]. Since perturbations cannot
propagate faster than c„ they should be smoothed out
and the bubble expands spherically to fill all space.

A detonation wave heats the gas as it passes, so one
might worry that if the gas is heated to a temperature
above T, the phase transition cannot continue. A detona-
tion will certainly propagate if the supercooling of the
Universe is greater than the subsequent heating, as is
found in some models (though not all). Further work
should investigate the details of the phase transition at a
detonation front in the case that the gas is heated above
Tc'

On the other hand, if for some unforeseen reason, a
terminal v,g smaller than c, is reached, then the subse-
quent evolution could continue as a deflagration with a
distorted surface. This distortion can be quite dramatic:
By the time the bubbles percolate, the surface area of the
bubbles is enhanced by roughly (R~„SA,, ) —10 kf.
Eq. (12)]. If this is the case it might play a role in EW
baryogenesis. However, the baryon number in recently
proposed existing models where baryogenesis occurs at
the phase boundary [16,17] should be unaltered. Al-
though the transition in this case would be accelerated,
the resultant baryon number is generally proportional to
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the amount of fluid that passes through the wall and this
remains unaltered by turbulence. In some models such as
that in Ref. [17], the rate of baryogenesis depends on
transport of particles near the wall and the final baryon
number depends on the wall velocity; in such models, the
resulting baryon asymmetry depends not on t,z but only
on the loca1 velocity of fluid through the wall, which
remains unchanged (in the nonrelativistic limit) by tur-
bulence. We can only speculate that relativistic correc-
tions could actually alter the flow velocity across the wall.
Another possible eA'ect of the wall convolution is that in

models where transport near the wall is crucial, particles
could multiple scatter off one wall into another wall; how-

ever, this would require that k, be smaller than the parti-
cle mean free path.

Throughout we assumed that latent heat is transported
from the surface hydrodynamically. If, on the other
hand, radiative transport is important and bubble growth
is limited by diA'usion of latent heat from the wall, then
the wall may become unstable on length scales larger
than the mean free path of radiation as shown by Freese
and Adams [18] for the case of a first-order QCD phase
transition. If so, instabilities may set in even earlier than
we found (as soon as the bubbles nucleate), and the
surface-area enhancement could possibly be even larger
than we estimated. The resulting bubble shape in this
case may deviate drastically from spherical; the bubble
looks like seaweed. Multiple scatter would also become
more important in this case.

To summarize, the propagation of a deflagration front
in a weakly first-order EWPT becomes turbulent, the
transition is accelerated, and the eAective propagation ve-

locity of the walls rapidly becomes supersonic. Under
these conditions the deflagration front could turn into a

detonation shortly after the bubble is nucleated, and the
macroscopic growth of the bubbles should occur via a

detonation wave traveling near c, . Our results suggest
that, due to hydrodynamic effects, macroscopic bubble
propagation may be significantly difl'erent from what one
would expect from detailed studies of the microscopic ki-

netics [5]. This should come as no surprise; it has long
been known that the propagation velocity of a spherical
detonation wave is determined by hydrodynamics (the
Chapman-Jouget condition [6,10,14]) and not by the mi-

croscopic kinetics of the reaction.
Strictly speaking, our analysis is valid only for nonrela-

tivistic propagation velocities and for transitions with
small latent heat, but a more general analysis under less
restrictive assumptions should result in similar con-
clusions. For example, as long as the deflagration veloci-

ty [. is subsonic, small perturbations could propagate
ahead of the detonation front, and the hydrodynamic in-

stability should exist; in addition, as c is increased (while
still subsonic), k, is decreased [cf. Eq. (11)] so the insta-
bility should set in sooner. If the latent heat is increased,

decreases and X,„becomes larger, so turbulence

should set in sooner. Also, for larger latent heats, the
detonation front propagates at a larger velocity [14]. The
transition from deflagration to detonation may also be
important for the dynamics of the QCD phase transition
if it is first order.
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