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Based on the subgraph expansions for phase transition models, we present a histogram Monte
Carlo method to calculate the free energy and other physical quantities for such models as continuous
functions of the system parameter. The method does not have any critical slowing down. We then
use physical quantities thus obtained in a percolation renormalization group method to calculate
critical point, critical exponents, and thermodynamic order parameter. Our method gives quite
accurate results and may be applied to many phase transition models.
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The Monte Carlo (MC) simulation [1] and the renor-
malization group (RG) [2] are popular tools in studying
phase transitions and critical phenomena. In 1976, Ma [3]
proposed a Monte Carlo renormalization group (MCRG)
to combine the advantages of the MC and the RG meth-
ods. Ma’s MCRG suffers from the critical slowing down.
For example, in the MCRG studies of the Ising model
on the simple cubic lattice with linear dimension L = 64
by Pawley et al. [4], 15 h of calculation were done in
a distributed array processor of International Computer
Limited to equilibrate the system near the critical point
and independent configurations are obtained typically in
the order of every 2.5x10° sweeps [4]. In this Letter, we
propose a histogram Monte Carlo renormalization group
method [5] for phase transition models, which does not
have any critical slowing down. The method is easy to
implement, makes efficient usage of simulation data, gives
quite accurate global and critical results, may be applied
to many phase transition models, and has many poten-
tial applications. It is closely related to the connection
between percolation and phase transition models [6-15]
and recent efforts to improve MC simulations [16-18].

Based on the subgraph expansion of Ising-type mod-
els in external fields, Hu has shown that phase tran-
sitions of many Ising-type models can be described as
geometric percolation transitions [6, 9-11]. In particu-
lar Hu has shown that phase transitions of the g-state
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Potts model (QPM) are percolation transitions of a g¢-
state bond-correlated percolation model (QBCPM) [9],
in which subgraphs G’ of b(G’) occupied bonds and n(G’)
clusters will appear with the probability weight

(G, p,q) = p"C)(1 — p)E-4E) (G (1)

where p = 1 — exp(—K) = 1 — exp(—8J) with J be-
ing the nearest-neighbor ferromagnetic coupling constant
and 8 = (kgT)~!. The spontaneous magnetization M
and the magnetic susceptibility x of the QPM are related
to the percolation probability P and the mean cluster
size S of the QBCPM, respectively [9]. Based on the
connection between the QPM and the QBCPM, Hu and
Chen [12] have formulated a percolation renormalization
group method (PRGM) and Swendsen and Wang [17]
have proposed a cluster Monte Carlo simulation method.
The PRGM may be used to calculate the free energy,
the critical point, the critical exponent, and the sponta-
neous magnetization of the QPM. The systems simulated
by cluster algorithms may reach equilibrium much more
quickly than the traditional MC simulation method; how-
ever, the critical slowing down is not completely elimi-
nated [19]. Recently, Ferrenberg and Swendsen proposed
a new MC technique for studying phase transitions [18].
The method makes very efficient usage of the data from
MC simulations. For optimizing the analysis of data from
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multiple MC simulations over a wide range of parameter
values, one should solve a set of coupled nonlinear equa-
tions [18], which is not a trivial problem.

The histogram Monte Carlo simulation method (HM-
CSM) proposed below may be realized easily to calculate
the free energy and other quantities over a wide range
of parameter values. It does not have any critical slow-
ing down. The basic data thus obtained may be used in
the PRGM [12] to obtain the critical point, critical ex-
ponents, and the order parameter. In the following, we
present our method for the QPM and the QBCPM [9].
The extension to other systems and the potential appli-
cations of the method are discussed at the end of this
paper.

In the HMCSM for the QBCPM on a lattice G of N
sites and E nearest-neighbor bonds, the bond random
percolation process is used to generate subgraphs G’ of
G using a sequence of bond probabilities of increasing
magnitudes: 0 < p; < pe < p3--- < py < 1. For each
p;. 1 < j < w, we generate Ny different subgraphs G’
of G. The total number of occupied bonds in G’, b(G’),
may be calculated easily. The multiple labeling tech-
nique [20] is applied to G’ to calculate the total number
of clusters in G’, n(G’), and the total number of sites in
percolating clusters, N*(G’), which is 0 for nonpercolat-
ing subgraphs. The data obtained from wNp different
G’ are then used to construct three matrices with ele-
ments Np(b,n), Nf(b,n), and Npy(b,n), with 0 <b < E
and 1 < n < N. Here N,(b,n) is the total number of
generated percolating subgraphs with b occupied bonds
and n clusters, N¢(b,n) is the total number of generated
nonpercolating subgraphs with b occupied bonds and n
clusters, and N,,(b,n) is the sum of N*(G’) over perco-
lating subgraphs with b occupied bonds and n clusters. In
the large number of simulations, we expect that the total
number of percolating subgraphs with b occupied bonds
and n clusters, Ng,(b,n), and the total number of non-
percolating subgraphs with b occupied bonds and n clus-
ters, Nis(b,n), should be proportional to Ny(b,n) and
Ny (b,n) with the same proportionality constant C(b),
which may be determined from the following equation:

N
Z[th(bv n) + Ntf(bv TZ)]

N
Z (b,n) + N¢(b,n)] =
n=1 n=1
=CE. (2)
Now we define I(p,q,b,n) by the equation:

I(p,q,b,n) = (K =1)bq" = eKE p®(1—p)F~bg™. The sum
of I(p,q,b,n) over all p0551ble percolating subgraphs G,
gives R(G,p, q); the sum of I(p,q,b,n) over all possible
nonpercolating subgraphs gives Q(G,p,¢q). In the HM-
CSM, R(G,p,q), Q(G,p,q), and the percolation prob-
ability P(G,p,q) may be calculated from the following
equations:
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E
R(G,p,q) =Y _I(p,q,b,n)CF
b=0

% 2712;1 Np(bs n)qn
YA [Np(b,n) + Ng(b,n))

M

Q(G,p,q) = ) I(p,q,b,n)CE
b=0
Z::l Nf (b7 n)qn (4)
SN [Np(b,n) + Ng(b,n))’
E
P(qu, q) Z nybb n)Cb

b=0
Z[ Ny (b, )a 5)

E N,(b,n) + N¢(b,n)]’

The sum of R(G, p, q) and Q(G, p, q) gives the partition
function Zn(G,p,q), from which we may calculate the
energy f(G,p,q):

f(G7p7 q) = anN(G7p7 Q)/N
:Fe(G5p1Q)+KZ/27 (6)

where Fe(G,p, q) is the difference between f(G, p,q) and
Kz/2 with z being the coordination number of the lat-
tice. It approaches Ing as p — 0 and approaches 0 as
p— 1and N — oo. It is more convenient to plot F, as a
function of p than to plot f, so we will plot F, instead of
f below. The internal energy U and the specific heat Cj,
may be obtained from the derivatives of the free energy,

)
U(G,p,q) = ~35 f(G,p, ),

5 (7)
Ch = ﬁ—:U(Gypz q)

The existence probability E,(G,p,q) is defined to be
the ratio of R(G,p, q) and Z(G,p,q). It should be noted
that F,, U, Ch, E,, and P presented above are con-
tinuous functlons of p. This is quite different from the
results obtained by traditional MC simulation methods
(1]. We have calculated Fe, U, Ch, E,, and P for the
QPM on lattices of different linear dimensions L. Typi-
cal calculated results for the square (sq) lattice are shown
in Figs. 1(a),1(b), where the exact results of Ferdinand
and Fisher [21] are shown by dashed lines for comparison.
Figure 1(a) shows that our F,, U, and C} are consistent
with the exact results [21] to a high degree of accuracy.
Thus our method gives a very nice account of global prop-
erties of the spin model.

Suppose we already carry out histogram MC simula-
tions on lattices G; and G5 of linear dimensions L; and
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FIG. 1. Calculated results for the g-state Potts model

(QPM) on the sq lattices with L = 4, 6, and 12, Ng = 10 for
L=4and Ng =2 x 10° for L = 6 and 12, and w = 459 for
every case. (a) The free energy F., the internal energy —U,
and the specific heat Cj, for the Ising model as a function of
p. Weset kg = J = 1. As a function of p, F, is decreas-
ing, —U is increasing, and Cp has a maximum. The upper
curves of F. and U are for L = 4; the lower curves are for
L = 12. Near p = 0.58 the curves for Ch from bottom to top
are for L = 4 and 12, respectively. Our results and the exact
results of Ferdinand and Fisher [21] are shown by solid and
dashed lines, respectively. The invisibility of the dashed line
means that our results and exact results are consistent. (b)
The existence probability E, as a function of p. The curves
which intersect at a point near E, = 0.8 come from the same
g value. The intersections from left to right are for ¢ = 1, 2,
3, and 4, respectively. Below the intersections, the curve at
the left is for L = 6 and the curve at the right is for L = 12.

Lo, respectively, where L; > Ls. The percolation RG
transformation from lattice G; to lattice G2 is given by
(12]

Ep(G2;pI’Q) = Ep(Gl,P, ‘I)y (8)

which gives the renormalized bond probability p’ as a
function of p. The fixed point of Eq. (8) gives the criti-
cal point p.. The thermal scaling power y; and the field
scaling power yn, which is equal to the fractal dimen-
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FIG. 2. HMCRG approach to the QPM on the sq lat-
tice with L; = 16, Ng = 6 x 105, w=369, and L, = 8,
Nr = 12 x 105, w = 369. (a) The critical point p. (X),
the thermal scaling power y; (*), and the field scaling power
yr (+) as a function of g. The solid curves from bottom to top
represent exact solutions for pc, yt, and yn, respectively. (b)
The percolation probability P as a function of p. The solid
curves from left to right are for ¢ = 1, 2, 3, and 4, respec-
tively, they represent our results. The dashed line represents
Yang’s exact solution [24]. For ¢ = 1 alone, we use Ng = 10°
for L1 = 20, Ng = 5 x 10° for L, = 10, and w = 459 for both
cases.

sion D of the percolating cluster at p. [15, 22], may be
obtained from the equations

op’ P(G,pe) LY
l =y = (ln P )Pc Y = D= In P(G%,pc)Lg . (9)
7k Y Tk

Using Egs. (8) and (9) with L; = 16 and Ly = 8,
we have calculated p., y:, and yp, for the sq lattice. The
results are shown in Fig. 2(a), where the exact solutions
[23] are also shown by solid lines for comparison. Figure
2(a) shows that our method gives quite accurate results.
Using the method of Ref. [12], we iterated Eq. (8) to
obtain the percolation probability, i.e., the spontaneous
magnetization, for the QPM on the sq lattice in the ther-
modynamic limit. The results are shown by solid lines
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in Fig. 2(b), where the exact result of Yang [24] for the
Ising model is shown by a dashed line for comparison.
The agreement of our result with Yang’s exact solution
[24] is excellent. In all calculations, we impose a periodic
boundary condition on the lattice.

Since we use the random percolation process to carry
out the simulation, which contains no dynamics at all,
there is no critical slowing down. This is better than tra-
ditional MC method [1] and Swendsen-Wang algorithms
[17]. Equations (3)—(5) suggest that very large values of
¢ and n will make the factor ¢" overflow. Fortunately,
most interesting critical phenomena appear in small val-
ues of g, i.e., ¢ < 4, and to get accurate results one need
not use very large lattices as may be seen from Fig. 2.
In the present paper, we used a Sun workstation to carry
out numerical calculations; it has only 32 bits per word.

The method presented above is for any lattice and
space dimensions. It is almost impossible to obtain an ex-
act order parameter for three-dimensional systems. How-
ever, using faster computers with 64 bits a word and some
data reduction technique, we may expect to calculate or-
der parameters for three-dimensional systems as good as
that of Fig. 2(b), i.e., almost indistinquishable from the
exact solution. This capability of our method is very
interesting and important when we try to compare theo-
retical calculations with experimental data.

Our method may be extended to other Ising-type mod-
els, e.g., the Ising model with multispin interactions in-
cluding the Baxter model as a special case, the dilute
Potts model including the BEG model as a special case,
the antiferromagnetic Potts model, etc., based on their
subgraph expansions [6, 10, 11, 25}, to hard-core particle
models based on Hu and Mak’s definition of clusters [5,
13}. and to quantum systems based on Suzuki-Trotter
decomposition {26]. The idea of the method can also be
of value in lattice gauge theory. Since our method may
determine accurate free energy and other physical quan-
tities for finite systems in a simple way. it is useful for
finite-size scaling analysis near the critical point [27] and
critical spin component ¢. [28], and for determining ze-
ros of the partition function [29] and the order of phase
transitions [30].

In summary, we have proposed a histogram Monte
Carlo renormalization group method, which may be im-
plemented easily, yet gives pretty accurate global and
critical results and has many potential applications.
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