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Modeling of the Rheology and Flow-Induced Concentration Changes in Polymer Solutions
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The hydrodynamics of polymer solutions is modeled using a newly developed, thermodynamically con-

sistent, generalized bracket formulation. This continuum thermodynamic development clarifies the con-

nection between the physical assumptions introduced in previous models (by Helfand and Fredrickson,
Onuki, Doi, and Milner) and the final governing equations. A quantitative description of the coupling

between elastic stresses and concentration changes as well as the modeling of interphases is provided.

The resulting equations describe the same phenomenology as the previous works; however, they are
quantitatively different.

PACS numbers: 47.50.+d, 05.70.Ln, 46.20.+e, 61.25.Hq

The phase-separation behavior of dilute and semidilute
polymer solutions under shear flow has attracted consid-
erable attention in the literature [1-3]. The proposed
theories attempted to couple the internal deformation
state and the number density of the polymeric molecules
in the description of the rheology and mass transfer.
Moreover, independently, Doi [4] and, more recently,
Bhave, Armstrong, and Brown [5] arrived at a similar set
of equations in an effort to describe stress-induced con-
centration [4,5) and conformation [5] changes in flows of
dilute polymer solutions. In all of these works, there are
certain ambiguities in the derivation of the equations. In
addition, there are several quantitative differences among
the proposed models.

The present contribution offers an alternative approach
based on a generalization of the Poisson bracket theory to
account for dissipative mechanisms [6-8]. The Lie-
Poisson bracket theory for continua is based on Arnold's

original idea of representing the Euler equations for ideal
fluid flow in a Hamiltonian form [9]. Since then, it has
been applied with great success to determine the Hamil-
tonian structures of many of the conservative systems of
differential equations arising in fluid mechanics, plasma
physics, etc. [10,11]. Its main usage in conservative sys-
tems has been in the implementation of stability analyses
[12). More recently, the Hamiltonian description of dis-
sipative systems has been made possible through the use
of a generalized bracket involving the Poisson bracket to-
gether with a dissipation bracket [6-8,13,14]. The main
utility of the generalized bracket for dissipative problems
is in the development of constitutive models for material
behavior [8], as it is used here.

We start first with a general, continuum fluid model in

which the independent variables are the densities of the

solution and the polymer, p and pt, respectively, the ve-

locity u, and an internal structural parameter Q p~&,
characteristic of the polymer molecules conformations.
For a Rouse chain, g can be identified with the second
moment of the end-to-end distance vector of the poly-
mers. The corresponding Hamiltonian involves the
kinetic-energy density defined as hk M2/p, where M is
the momentum density, M pu, and a general internal
free-energy density, h, (p tQ, Vp~). In the most general
case considered here, h, is assumed to involve three types
of contributions. First, a Flory-Huggins term accounting
for entropic and enthalpic contributions due to mixing of
the polymer with the solvent, second, an intramolecular
free-energy term accounting for the departure of the po-
lymer conformation from the equilibrium one, and third,
a term depending on the polymer concentration gradient
accounting for "free-surface" type of interactions. A typ-
ical expression for h, is

H „2pu dV+ kttT(nlnp+n, in&, )dV

+ 2 Ktr(g)dV —
2 nkttTlndet dVj 2

tu

+„2Kt(V&) dV. (1)
In Eq. (1), p is the volume fraction of the polymer, p, the

volume fraction of the solvent, n the polymer number

density, and n, the solvent number density.

The Poisson bracket generates the convective terms in

the final equations while the dissipation bracket is respon-

sible for additional terms that specify the couplings of the

various transport mechanisms. To a first-order approxi-

mation (near equilibrium) and ignoring entropy correc-

tion terms, the dissipation bracket can be taken to be a
bilinear expression in F and G:
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Here, rl, p, Q, Q, and I are phenomenological coefficients describing the solution viscosity, relaxation phenomena,
diffusion due to concentration gradients, diffusion due to stress gradients, and dissipation driven by large gradients in the
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conformation of polymers, respectively. Note that the various couplings implied in Eq. (2) which emerge naturally
within the generalized bracket formalism are consistent with the principle of thermodynamic equipresence [15].

Based on the above expression and the Poisson bracket [8), the resulting evolution equations for an incompressible
flow are

p& BH= —upVppi+V, D,pVp +V,( —, E py, V,(spy),
Bp)

(3)

h,= —upVpM, —V,p —
Vp V,pi +Vpo,p+Vp[yl(Vpu, +V,up)],

Vppi
r

(4)
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where the subscript (1) denotes the upper-convected time
derivative [7], the polymeric contribution to the stress is

defined as

BH"&=2C
aC )'P

(6)

+cp„(b.,—gn. ,)+c„(b.„—gn. „)], (7)

where is the Oseen-Burgers tensor [16],which may be
reexpressed in terms of the second-moment tensor g sim-

ply enough as
r )/2
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where h=(gl6ri, )(K/yr kgT)'~ measures the strength of
the hydrodynamic interaction and is typically believed to
lie within the range 0.0~h ~0.3. %'hen A=0.0, the
Oseen-Burgers tensor vanishes and the model reduces
back to the simple Hookean dumbbell case. This repre-
sents closely the "consistently averaged" hydrodynamic
effect considered by Ottinger and others [16-18]. As
seen in Ref. [7], the resulting model, although not per-
fect, provides a very good first approximation of the main
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and the Einstein summation convention has been assumed
over repeated Greek indices.

The momentum equation, Eq. (4), is quite standard,
except for the presence of an additional term, in the form
of a stress, that arises from the dependence of the Hamil-
tonian on Vp&. The evolution equation for the conforma-
tion tensor Q is also a standard one [7] with the exception
of the second term on the right-hand side (rhs) which

couples Q with the cheinical potential. This term is ab-
sent in previous works [2,5). Intrachain hydrodynamic
effects can very naturally be modeled through the selec-
tion of an appropriate relaxation tensor g. Indeed, as it
is explained in Ref. [7], the following choice for A pro-
vides an accounting of hydrodynamic interactions be-
tween the beads of a Hookean dumbbell model which

corresponds (in the lowest order of approximation) to the
one-relaxation mode abstraction of the Rouse chain used

here,

=2
Aapyf [Cay(bpE 4 Ape) +Caa(bpy (tippy)

hydrodynamic effects in the polymer rheology. Namely,
it results in the prediction of a shear thinning viscosity
and first normal stress coefficient [18]. Higher-order ap-
proximations of viscoelasticity, including multimode mod-

els and/or a Gaussian approximation for the hydro-
dynamic interactions [19],may also be used, if so wished,
at the expense of complicating the final equations.

However, the major outcome of the formulation is Eq.
(3), the evolution equation for the polymer density. This
shows that the driving forces for the mass flux of polymer
molecules are, in general, both the gradient of the chemi-
cal potential, V(BH/bpi), and the gradient of the extra
stress, V ~. To determine the exact magnitude of these
contributions one has to resort to a microscopic picture
for the polymer molecules. Over the past years this has
led to the development of various models for describing
hydrodynamics of polymer solutions, Among them, the
two-fiuid model [2,4] and two microscopic models for the
Rouse chain (one based on the Langevin equations for
the positions of the beads [3] and the other on the kinetic
theory [5)) appear to be the most significant. It is very
important to note here that all of these approaches lead
to the same expressions for the coefficients [obtained by
direct comparison of Eq. (5) with their flux equation) Q
and g:

D,p
= (I/2g) pib', p,

F,py,
= (I/() b,pby, ,

where g is a viscous friction coefficient which is of the or-
der 6yrrl, ( in theta solvents, where yl, is the solvent

viscosity and g- I/p the blob size [2].
The adoption of a two-fluid model is equivalent to the

notion of two interpenetrating continua. The interactions
between the two components can vary from very vigorous,
leading to a complete equilibration of momentum and en-

ergy associated with the one-fluid, two-component model

described above, to very weak, leading to separate mo-

menta and thermal energies as the ones often associated
with the electrons and the neutrals in a dilute plasma
[20]. The case of dilute polymer solutions can be con-
sidered as an intermediate one, where complete thermal
but only partial momentum equilibration is established
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between the macromolecules and the solvent. Two-fluid
model descriptions in terms of hydrodynamic equations of
motion have quite successfully been applied in the past to
condensed phase systems, such as charged and neutral
superfluids, and dielectric and magnetic crystals [21].

In the two-fluid model, the independent variables are
the polymer density, and the conformation tensor Q=p|z,
as before, but also the two momentum densities M+ and
M — corresponding to the total, p, and the reduced,
p =plp2/p, densities, respectively. Then, in the dissipa-
tion bracket represented by Eq. (2), the third and fourth
of the five terms are replaced by

where a new tensorial parameter, the drag coefficient ten-
sor 7, is introduced. 7, is constrained to be a symmetric
and non-negative definite tensor from the Onsager sym-
metry relations and the principle of non-negative entropy
production, respectively. This is the simplest approxima-
tion assumed for describing the interactions between the
two media [20]. Whether it is adequate to capture the
complex character of the polymer-solvent interactions an-
ticipated due to the large number of the internal degrees
of freedom of the macromolecules is a subject that
deserves further investigation.

Under certain simplifications, such as the neglect of
inertial effects in the evolution equation for the reduced
momentum density, valid for viscous, incompressible
flows, it can be shown [8] that Eq. (10) leads to the fol-
lowing diffusion equation for pl.

themselves in two ways: They act as an additional stress
into the momentum equation [third term on the rhs of
Eq. (4)], and they modify the equation for the osmotic
pressure [second term on the rhs of Eq. (12)]. Notice
that the last contribution preserves the symmetry of the
other terms. These gradient contributions are different
from the previously proposed ones [1,2].

The two previous microscopic approaches to the prob-
lem [3,5] are both based on the Rouse chain model and
lead to equations that are similar to the ones correspond-
ing to the two-fiuid model presented here. In particular,
their expressions for Q and L Eq. (9), are the same as
the ones derived from the two-fluid model above. This
suggests that their modeling assumptions are very similar
to that of interpenetrating continua. Indeed, all the elas-
ticity is assumed to be confined within the chain or
dumbbell. Additionally, according to Eqs. (35) and (43)
in Bhave, Armstrong, and Brown [5], the transport
coefficient g is given as

ah, 8h, Bh,II-p| +(V~pl) +C p
—h, .

pl Vppi
" C p

(i2)

The equations for the total momentum density and the
evolution of the conformation tensor are similar to Eqs.
(4) and (5) above.

Equations (3) and (11) show that both the single- and
two-fluid models developed using the generalized bracket
formalism lead to similar equations. The two-fluid equa-
tion, Eq. (11), is more limited because of the underlying
assumptions for the mechanisms that govern the concen-
tration profile in flows of polymer solutions. However, it
simultaneously conveys more information: First, the
diffusion coefficients Q and g, can be extracted in a form
consistent with the previous two-fluid models shown in

Eq (9) [w.ithin a factor of (1 —p) ] if the drag coefficient
tensor is assumed to be isotropic. A nonisotropic form
dependent on the polymer conformation tensor g might
better represent the polymer-solvent interactions, espe-
cially far from equilibrium. Second, from the definition
of the osmotic pressure II, Eq. (12), and the fact that the
elastic part of h, is a linear function of the polymer densi-

ty pi, Eq. (1), only the nonelastic part of the free-energy
density h, appears in the driving force for the two-fluid
model. This is in agreement with the work of Helfand
and Fredrickson [1].

In the absence of dependencies of h, on the polymer
concentration gradient Vpi, our two-fluid model concen-
tration equation is astonishingly similar to those of Hel-
fand and Fredrickson [1],Onuki [2], Milner [3], and Doi
[4]. Where our results are qualitatively different from all
previous works is in the evaluation of the effects of terms
that relate to surface-tension contributions in phase-
separated systems. Both the single- and two-fluid models
show that such interphase-related interactions manifest

(i3)(I/2&) b"bnA'
Two more points are worth mentioning about the work

of Bhave, Armstrong, and Brown [5]. First, there are
some subtle differences from the bracket formalism: The
constitutive equation for the structure tensor lacks a term
which arises from the coupling of stresses with polymer
concentration, the second term in the rhs of Eq. (5).
Moreover, their mass flux equation, Eq. (35) in Bhave,
Armstrong, and Brown [5], involves an additional "iner-
tial" term, —m/2V g Vv, which is absent in our formu-
lation. Second, Bhave, Armstrong, and Brown [5] have
applied their model to the study of the rheology of dilute
polymer solutions next to a solid wall. However, we be-
lieve that other phenomena, namely, phenomena of ther-
modynamic origin, are the dominant ones and primarily
control the behavior of a dilute polymer solution next to a

pl bH tahe—Vp(uppi)+V~' Y p VpiI —V„2Cp +p|Vp
t b,„(V„pi)

where p=—pl/po, +=pl(I —p) g ' is the diffusion tensor,
i

and II, the osmotic pressure, is defined as
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solid wall. As shown in Mavrantzas and Beris [22], it is
the free-energy increase near the wall due to loss of con-
formational entropy caused by the presence of the solid
barrier that gives rise to phenomena such as the apparent
slip in the shear How of polymer solutions and the de-
pletion of the interfacial region in polymer molecules.
This belief is reinforced from the very good agreement of
the predictions with experimental data shown for the slip
velocity and the depletion phenomena as a function of the
imposed shear stress and the geometrical parameters
[22]. Note also that the concentration profiles shown in

Bhave, Armstrong, and Brown [5] change continuously
with the shear rate (or Pe in their work). In contrast, the
profiles shown in Mavrantzas and Beris [22] from the en-

tropy modification theory show a saturation at high shear
rates, in agreement with both experimental observations
[23] and Brownian dynamics simulations [24].

In conclusion, we find that there are more similarities
than differences among the various governing equations
proposed for the hydrodynamics of polymer solutions.
However, we believe that further quantitative comparison
of the predicted effects with experimental data, especia]ly
for the stress-induced concentration changes, is necessary
in order to validate the incorporated assumptions and, in

particular, that of the appropriate interaction between the
components of the two-[iuid mixture. We hope that the
systematic methodology employed in this work can be
very helpful in such an effort by providing a specific, ther-
modynamically consistent set of governing equations.
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