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Usefulness of the Burnett Description of Strong Shock Waves
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Atomistic simulations of a strong shock wave in a hard-sphere gas are analyzed in terms of thermo-

dynamic forces and fluxes.

Evidence is provided that the Burnett corrections to the heat flux

significantly improve the agreement with the computed values over the Navier-Stokes predictions in the

shock-front region.

PACS numbers: 47.40.Nm, 47.45.—n, 51.10.+y

A plane shock wave in a fluid [1-3] is known to be
inaccurately described by the Navier-Stokes equations of
fluid dynamics; in the case of a gas, deviations occur al-
ready for Mach numbers M =2 (see, e.g.,, [4]). The
Navier-Stokes equations represent a continuum theory
based on linear relations between thermodynamic forces
and fluxes. These relations are known as the linear laws:
Newton’s law of friction and Fourier’s law of heat con-
duction. In a strong shock wave, the forces, i.e., gradients
in hydrodynamic densities, are large, and the failure of
the Navier-Stokes equations can be attributed to devia-
tions from the linear laws.

For the case of a dilute gas, more general relations be-
tween thermodynamic forces and fluxes have been derived
from perturbation expansions of the solution of Boltz-
mann’s equation [5]. A well-known expansion is the
Chapman-Enskog expansion [6], which yields the so-
called Burnett equations when second-order terms (both
products of gradients and second-order derivatives) are
retained. Although doubts have been raised concerning
the mathematical validity of the Burnett equations [7-9],
an important question is whether they give a better
description of fluid flow with large gradients, such as a
shock wave.

In this Letter we present atomistic-simulation results
for the local fluxes and forces in strong shock waves in a
hard-sphere gas. For Mach numbers between M =4 and
M =134, we find that, in the region of the shock front,
the viscous parts of the longitudinal and transverse
momentum fluxes (i.e., components of the pressure ten-
sor) are about 30% larger than expected from Newton’s
law of friction, and that the heat flux is about 70% larger
than expected from Fourier’s law of heat conduction. We
demonstrate that the comparison is considerably im-
proved by adding the Burnett corrections to the linear
laws.

For the simulation of a hard-sphere gas we use two
techniques. First, we use the molecular-dynamics (MD)
method, i.e., direct integration of the equations of motion
of the atoms [10). Second, we use the direct simulation
Monte Carlo (DSMC) method [11-13], a powerful tech-
nique which is widely used in rarefied gas dynamics (see,
e.g., [14]). The DSMC method gives a stochastic solu-
tion of Boltzmann’s equation, in the sense that it uses the
same assumptions that are implicit in Boltzmann’s equa-

tion (in particular, the stosszahlansatz) [15). We find
that MD and DSMC results are in good agreement with
each other, even for a shock wave with Mach number
M =134,

As far as we know, MD simulations of shock waves in
a gas have not been reported before in the literature. MD
simulations of shock waves in a liquid have been reported,
showing density profiles with small but significant devia-
tions from Navier-Stokes profiles [16-18]. While our
work was inspired by this work on liquids, a major reason
for studying a dilute gas was to investigate the accuracy
of the Burnett equations.

For the description of a plane shock wave one can use a
fixed laboratory frame, in which the shock front moves
into a gas at rest. It is, however, more convenient to use
a moving frame, in which the shock front is fixed. In this
frame the shock wave has a steady profile, so that the hy-
drodynamic fluxes

pu (mass flux) , (1a)
P +pu? (momentum flux) , (1b)
(e+ T u?)pu+Pyu+Jg,. (energy flux) (1¢)

are constant, i.e., independent of position and time. Here
p is the mass density, u is the x component of the stream
velocity (i.e., the component in the direction of the shock
wave), Py, is the longitudinal component of the pressure
tensor, e is the internal energy per mass unit (excluding
kinetic energy relative to the fluid stream), and Jg x is
the x component of the heat flux.

Far from the shock front the heat flux Jp . vanishes,
and P, is equal to the hydrostatic pressure p. This leads
to the Hugoniot relations between the gas properties in
the unshocked (indicated by index 0) and shocked (index
1) regions:

Poo=piu,, (2a)
potpous =pi+puf, (2b)
eot s ud+polpo=ei+ sut+pilp:. (2¢)

In addition, the equation of state and the energy function
are known. Here we consider a monatomic hard-sphere
gas, with density small enough for use of the ideal-gas
law, so that p =nkgT (n=p/m, m is the mass of a mole-
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cule) and e =% kgT/m. The Mach number is defined as
M =ug/ag, where a denotes the speed of sound.

To compute the full profiles p(x), u(x), and T(x)
from conservation of hydrodynamic fluxes (1), one intro-
duces the linear laws. Newton’s law of friction gives for
the longitudinal and transverse components of the pres-
sure tensor

Pac) =p () = [4 (o) +5001 40 (3a)
Py () =p )+ 1§ () (0] 24 (G3b)

where n=(5/165%)(mkgT/x)'"? is the shear viscosity of
a gas of hard spheres with diameter o, and the bulk
viscosity ¢ is zero for an ideal gas [6]. Fourier’s law of
heat conduction is

KdT(x)
dx

where x=(25¢y/320%) (mkgT/n)"? is the thermal con-
ductivity [6]. The profiles are now easily obtained by in-
tegration starting from the high-density side of the shock
wave [17,19].

In our simulations, we use number densities in the re-
gion from 3x10% to 1.2x 1026 m ~3. These densities lie
in the narrow region where the MD method and the
DSMC method can be compared and still be used at a
reasonable cost.

Before the results are presented, some details of the
simulations are given. The presentation is restricted to a
shock wave with Mach number M =134, but it should be
noted that we also performed simulations for M =10.8
and M =4.6, which gave qualitatively similar results as
for M =134.

For the MD simulations the equations of motion of the
molecules are integrated by the method described in Ref.
[10]. Since we are dealing with hard spheres, the dynam-
ics consists of a succession of elastic collisions. A rec-
tangular simulation box is used, with dimensions along
the x, y, and z axes of 70x10 % m, 0.57x10 78, and
0.57x%10 8, respectively. For efficient computation of
collision times, the system is divided into 500 cells along
the x axis. Collisions with image particles are restricted
to nearest image cells by treating cell boundaries as virtu-
al collision partners. Since we want to simulate a steady
flow, particles are injected and removed at the two system
boundaries normal to the x axis. Time intervals between
successive injections are computed from the following ex-
pression for the inward flux J; in the direction of the
stream velocity u in an equilibrium gas [11]:

Ji=nlkgT/2zm) " Plexp(—s?) +sVrll +erf(s)}], (5)

with s =u/QkgT/m) "2 Values of n, u, and T at the two
boundaries should be selected in accordance with the
Hugoniot relations (2). For the simulation with Mach
number M =134, the number of particles was around

JQ,x = 4)
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N =2000, and the simulation time was 0.6x10~? s, in-
cluding 0.2x10 ™% s for reaching the steady state (step
functions were used as initial profiles).

The DSMC method is an approximate, but computa-
tionally fast, method of calculating the dynamics of a
molecular system. The basic approximation is the uncou-
pling, over a small time step (small compared with the
mean collision time of the molecules), of the motion and
the collisions of the molecules. The system is again divid-
ed into cells, with linear dimensions small compared with
the mean free path of the molecules. A Monte Carlo
(i.e., random) procedure is employed to select, for each
cell, a representative set of collisions appropriate to the
time interval (for more details, see Refs. [12,13]). For
the simulation with Mach number M =134, the number
of hard-sphere molecules was around N =20000, a simu-
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FIG. 1. Profiles p(x), u(x), and T(x) for a shock wave with
Mach number M =134, obtained by MD (solid circles), DSMC
(solid lines), and Navier-Stokes equations (dotted lines).
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lation box of length 70%10 "% m was used (the y and z
directions are irrelevant for the DSMC method in a one-
dimensional problem), the number of cells was 500, the
time step was 10 ~'* s, and the total simulation time was
the same as for the MD simulation. Flux conditions at
the boundaries were obtained by replacing, after each
time step, all molecules in the first and the last cell by
new molecules with velocities selected from the appropri-
ate Maxwellians.

In Fig. 1 simulation results are presented for the densi-
ty, velocity, and temperature profiles of a shock wave
with Mach number M =134. MD and DSMC profiles
are in good mutual agreement. For comparison, Navier-
Stokes profiles are also included in Fig. 1. Both the MD
and DSMC temperature profiles are nonmonotonic, with
a maximum near position x =0. This is not an artifact of
the simulations, but has been observed also in accurate
numerical solutions of the Boltzmann equation [20]. It is
concluded that our simulation results are accurate, and
also that the DSMC method provides a good approxima-
tion for a strong shock wave at the densities we have
used.

Figure 1 clearly demonstrates the well-known fact that
the Navier-Stokes equations fail for a shock wave with
Mach number M = 2. We will now demonstrate quanti-
tatively how this failure corresponds to local deviations
from the linear laws, which form the basis of the Navier-
Stokes equations. In Fig. 2, MD and DSMC profiles of
hydrodynamic fluxes are presented: the viscous parts
(i.e., excluding the hydrostatic pressure) of the longitudi-
nal and transverse momentum flux, and the heat flux.
Also included in Fig. 2 are the profiles predicted by the
linear laws (3) and (4), with hydrodynamic forces ob-
tained by numerical differentiation of the MD and
DSMC velocity and temperature profiles. The extrema in
the momentum-flux profiles are about 30% larger than
expected from Newton’s law of friction. The minimum in
the heat-flux profile is about 70% larger than expected
from Fourier’s law. In addition, the flux profiles are
slightly shifted with respect to the profiles predicted from

the forces. It should be noted that deviations from theJ

12.89
T

du
dx

dr

=1 !
X

297 d’u | _ 2.06
' dx? p

Adding this correction to the values predicted by
Fourier’s law substantially improves the comparison with
the directly computed heat flux (see Fig. 2). We tried to
compute also the Burnett correction for the momentum
flux [6,21], but unfortunately the statistical scatter in the
simulation values is not small enough to allow an accu-
rate determination of second-order derivatives [the
momentum-flux correction contains important contribu-
tions from second-order derivatives, whereas the second-
order derivative in the heat-flux correction (6) is small
compared with the other two terms]. If a full hydro-
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FIG. 2. Profiles Py (x)-p(x), P,y (x)-p(x), and Jg . (x) for a
shock wave with Mach number M =134 (the position scale is
the same as in Fig. 1), obtained by MD (symbols) and DSMC
(lines). Solid circles represent directly computed fluxes, open
circles represent values predicted by the linear laws (3) and (4),
and squares represent values including the Burnett correction

(6).

ideal-gas values of the transport coefficients 7, ¢, and «
are easily verified to be negligible for the density range
used here [7]. We believe that we have performed an ac-
curate determination of the deviations from the linear
laws for a shock wave. The accuracy is confirmed by the
agreement of MD and DSMC values in Fig. 2.

Now, we look at the adequacy of the Burnett equations
to account for the deviations from the linear laws. The
Burnett correction to the heat flux is [21], for the present
geometry,

2]

dynamic calculation including the Burnett terms would
be possible, the enhanced hydrodynamic fluxes might give
a larger shock-wave thickness, in better agreement with
the simulations (see Fig. 1).

It should be noted that the improvement obtained by
the Burnett correction to Fourier’s law does not imply
anything concerning the mathematical validity of the
Burnett equations. However, the improvement does im-
ply that the corresponding approximation of the distribu-
tion function gives a reasonable description of a fluid sub-
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ject to large gradients.
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