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Topological Correlations in Cellular Structures and Planar Graph Theory
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We study the topological properties of the ensemble of cells with trivalent vertices in the plane. The
problem is equivalent to counting planar Feynman diagrams with a cubic interaction. This ensemble is
also the equilibrium state of a topological model of cellular structure, obtained by applying repetitively a
topological Hip transformation to any initial configuration of cells with trivalent vertices. We give
analytical expressions for two-cell correlations; in particular, we give the analytical form of the average
number m(n) of edges of cells adjacent to an n-sided cell. These results are confirmed by simulations.

PACS numbers: 68.35.Bs, 02.40.+m, 05.20.—y, 1L10.—z

One finds many examples of random cellular structures
in everyday life. Bones, wood, cork, foams, plants, food
(bread, meringue, etc.), and soap froth, as a whole or

partially, are cellular materials [I]. Since cellular struc-
tures exist on scales ranging from microscopic to geologi-
cal, much work has been devoted to the search for univer-

sal geometrical characteristics. For instance, leaving
aside their metric properties (e.g. , sizes of cells), it is im-

portant to understand whether cellular structures obey
some universal topological laws. It is therefore natural to
study the probability distribution P„of the number n of
edges of a given cell, or correlations between the numbers
of edges of adjacent cells. For example, Aboav noted a

simple correlation between the number of edges n of a

given cell and the average number of edges m(n) of its n

neighbors [2,3]: In all known cellular structures it is

indeed usually found that nm(n) is, to a very good ap-
proximation, linear in n.

In this Letter we present an analytical study of these
correlations in the case of a very simple, purely topologi-
cal model of cellular structure. %e give the two-cell

probability distribution Qt„of finding an /-cell adjacent to
a n-cell; we find also the exact form for the average total
number of edges of cells adjacent to an n-sided cell:

nm(n) =7n+3+9/(n+ I ) .

Hence Aboav's law, stating that this quantity should be
linear in n, is slightly violated. These results are in corn-
plete agreement with our numerical simulations.

%e consider the following model. Starting from any
configuration of N+2 cells with trivalent vertices (three
edges meet at a vertex), one chooses randomly an edge
between two cells and applies a topological transforma-
tion Tt (cf. Fig. 1). Each configuration of cells generated
in this way corresponds to a planar Feynman diagram of
a p field theory with a fixed number of vertices. Such a
process is ergodic, since any two graphs of fixed number
of vertices may be related to each other through a se-
quence of transformations [4]; furthermore it is easy to
show that it satisfies detailed balance. Hence, iterating
this transformation leads to an equilibrium state. The en-

semble of configurations thus obtained is also the ensem-
ble of planar (t diagrams with 2N vertices. We restrict
the present study to a variant of this model where the
class of diagrams considered does not contain tadpoles or
self-energy parts; i.e., one cell cannot touch itself and two
cells cannot touch more than once. In other words, T] is
not applied to an edge such that cells c and d in Fig. 1 are
already adjacent; in particular it is not applied to an edge
belonging to a three-sided cell.

Consider a configuration of )V+2 cells, labeled by
i =1, . . . , IV+2, on the surface of a sphere, i.e., a graph
G with the topology of the sphere. By the Euler relation
one has

Ã(cells) —A(edges)+ Ã(vertices) =2. (2)

Since 2JV(edges)=3JV(vertices), one finds that Ã(ver-
tices)=2N and A'(edges)=3N. The graph G is entirely
described by its adjacency matrix,

1 if i,j are adjacent,
G; ='

0 otherwise, (3)

Ya

FIG. 1. The topological transformation T l.

normalized such that g; J G;t =g, n; =6N, where n; is the
number of edges of the ith cell.

The statistics of cells and edges —for a particular
graph 6—is given by the following probability distribu-
tions, defined in the thermodynamical limit. The proba-
bility distribution of cells with n edges is

&nP„= lim g6„„,= limjv- IV+2 ~
' ' w- %+2
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where N„ is the number of cells with n edges. P„ is nor-
malized such that Q„P„=I and g„nP„=6. The proba-
bility of finding an edge common to two neighboring cells
with numbers of edges I and n is defined as

1 Nin
Qln 1tm Xr Gij bl, n, bn, n&

n - 2 lines

where NI„ is the number of such edges. Note that each
edge is counted twice. Ql„ is normalized such that
Ql Ql„—=Q„=nP„/6 and gl „Ql„=l. Q„ is the probabili-

ty of finding an edge belonging to a cell with n edges.
The quantity m(n) introduced above is the conditional
expectation value,

I - 2 lines

(g) g g
2N(G) g z g

2N1

G k(G) N-i
(7)

Z2N counts the number of (vacuum) graphs with 2N ver-
tices, weighted by their symmetry factors. We define the
quantities

(g) g g2N(G) g Z g2N
Nl„(G)

G k(G) ln, 2N

Zl„2N counts, on the average, the number of edges of two
adjacent I- and n-cells for graphs with 2N vertices. They
are thus simply related to the probabilities Ql, . In Fig.
2(a) such an edge is marked. By inversion one obtains a
topologically equivalent graph; one may then decompose
the rest of the graph into connected pieces, as illustrated
by Fig. 2(b). This permits us to express Zl, (g) in terms
of the Green functions W„(g) =gG g ", where the
sum goes over all connected planar diagrams with n

external legs and M vertices, without self-energy parts
and tadpoles. Defining the generating functions

W(x) = 1+x + g W„(g)x",
n~3

z(x,y) = g zl„(g)x'y",
l, n 2

m(n) =pl " = glgl„.
l Qn nPn l

Note that if there were no correlations between cells, Ql„
would factorize into Ql Q„, and m (n) would equal

gl Igl =+~I Pl/6=6+ I&2/6 where p2=+, P„(n —6)'.
The probabilities considered hereafter will be obtained

from the former ones, by averaging on the ensemble of di-
agrams with a fixed number of vertices —for simplicity
we will keep the same notations for the averages. This
implies attributing weights to each particular diagram.

The counting problem for planar diagrams has been
well studied in the past [5]. Using these techniques, the
authors of Ref. [4] have computed the probability distri-
bution P„. The calculation of Ql„, sketched below, is in

the same spirit, though more complicated. Consider the
generating function Z(g) for the number of connected
planar graphs:

(b)

FIG. 2. (a) Representation of a graph with a marked line.
(b) Decomposition of the hatched part of (a) into connected
Green's functions.

Z(x,y) can be expressed through W(x) as

( )
(x- )(x )'

(IO)
xW(yg) —y W(xg)

Searching the thermodynamical limit N ~ of proba-
bilities implies extracting the singular behavior of their
generating functions. Around g =g, =3 /4, the func-
tion W(x) behaves as

W(x) =W(x) ~s-s + (g, —g ) j w(x) +

Expanding Z(x,y) in (g2 —g,2) I,
Z(x,y) =Z(x,y) ~s-g +(g,' —g')'j'z(x, y)+

yields the generating function for the probabilities Ql„,

g(x,y)=' y = g x'y"gl„.
z(1, 1) (,.-2

It reads

(i3)

f(x) I + 9x —g

f(i) 2 (4 —3x)"'

F,(x) = —,', [9x+g+(4 —3x)"'].

f and Fp are related to W(x) by

(is)

Q(x, y) =,x'y'(x —y) y- - y, , (14)
3'

2 2 yO(x) —xg(y)
4' [yFp(x) —xFp(y) ] '

where
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Fp(x) =W(gx)~g=s, f(x) =w(gx).

Note the normalization conditions

(i6)

Q(1, 1) =1,

Q(l, x) =Q(x, l) =Q(x) =QQ„x"=g P„—x",

where

P„=16(n —2) (2n —2)! 3

n!(n —I )! 16

This equation was already given in Ref. [4]. Finally us-

ing the fact that

n

g lQ(„=, Q(x,y)n! |Iy" x x l,y=0
' n

s
(7 2+ 10 + 12)

n —2) (2n —2)! 3

3 (n —I )!(n + 1)! 16

yields the result for nrn(n) given in Eq. (1). Note that

pp =6Q'(1) —36 =10.5.
The Qi„were obtained from Eq. (14) using MATHEMA-

TICA. These probabilities are shown in Fig. 3(a) as func-
tions of n for diA'erent values of l. An interesting quanti-
ty is Q1„/PIP„. In a recent paper [6], it was claimed, on

the basis of maximum-entropy arguments, that this quan-

tity should be linear in n for each I, implying the linearity
of nm(n). In Fig. 3(b) we show QI„/PIP„as a function of
n, for various 1. Linearity is seen to be a good approxi-
mation for this quantity. For completeness, we show the
plots of P„and nm (n) in Figs. 4(a) and 4(b).

Simulations. —We took as the initial condition a hex-

agonal network of 400x 400 cells, with periodic boundary
conditions. At each step, an edge is chosen at random. I f
this edge fulfills the constraints mentioned above —en-
suring that no self-energy parts or tadpoles be gen-
erated —the topological transformation T] is applied to
it. The points with error bars in Figs. 3 and 4 represent
the average of QI„, Q~„/PIP„, P„, and nm(n) at 100
difterent times, after equilibrium is reached. The error
bars give the standard deviations of these quantities. All
these numerical data agree perfectly with the analytical
curves.

The cellular structure used in the simulations is defined
on a torus, whereas the planar approximation uses the to-
pology of the sphere. This is not contradictory since,
though the partition function Z(g) depends on the genus
of the surface on which the cellular structure is defined,
this is not the case for QI„or P„which are local proper-
ties.

A number of other variants of this problem may be
studied. We will present some of them elsewhere; in par-
ticular we will give the analytical study of correlations for
the ensemble of diagrams with self-energy parts.

Other topological models implementing both the T]
transformation and the topological transformation T2
(suppression of triangles) may also be studied (see, e.g. ,

Ref. [6]). In this case, the detailed balance property of
the model is lost. Instead of an equilibrium state, a scal-
ing regime is reached through the dynamics. The con-
figurations thus obtained form a subset of all the possible
configurations considered in this Letter. Analytical con-
siderations on the correlations should be more diScult to
elaborate.

To conclude, we believe that the exactly soluble model
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FIG. 3. (a) The joint probabilities QI„vs n, for 1=3, . . . , 9. (b) Plot of QI„/PIP„vs n, for 1=3, . . . , 9. The continuous curves are

the theoretical predictions. Points with error bars are results of simulations, averaged on 100 diAerent times.
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FIG. 4. (a) Probability distribution P, of cells with n edges. (b) Plot of nm(n) Sam.e representation as Fig. 3.

presented in this Letter may serve as a template for more
complicated cellular structures. In particular the results
given here may help to understand the theoretical status
of maximum-entropy arguments.

We wish to thank F. David, B. Derrida, J. M. Luck, D.
Mukamel, and N. Rivier for interesting discussions.

[1] L. J. Gibson and M. F. Ashby, Cellular Solids (Per-

gamon, New York, 1988).
[2] D. A. Aboav, Metallography 3, 383 (1970); 13, 43

(1980).
[3] D. Weaire and N. Rivier, Contemp. Phys. 25, 59 (1984).
[4] D. V. Boulatov, V. A. Kazakov, I. K. Kostov, and A. A.

Migdal, Nucl. Phys. B275, 641 (1986).
[5] E. Brezin, C. Itzykson, G. Parisi, and J. B. Zuber, Com-

mun. Math. Phys. 59, 35 (1978), and references therein.
[61 M. A. Peshkin, K. J. Strandburg, and N. Rivier, Phys.

Rev. Lett. 67, 1803 (1991).

2677


