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Spanning Probability in 2D Percolation
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The probability Rl. (p) for a site percolation cluster to span a square lattice of side L at occupancy p
is reexamined using extensive simulations and exact calculations. It is confirmed that Ri, (p, ) ~

2 as
I ~ oo in agreement with universality but not with renormalization-group theory. Many estimates
of p, that derive from Ri, (p) are shown to scale with L more weakly than normal finite-size scaling,
and the value p, = 0.592 7460 + 0.0000005 is determined.

PACS numbers: 64.60.Ak, 05.70.Jk

The percolation model has been investigated intensely
for decades, and a large variety of approaches and tech-
niques have been developed for its study [1]. One ap-
proach has been through the function Rl, (p), which gives
the probability that a finite system of size L percolates
at occupation probability p. The percolation transi-
tion is clearly illustrated by the transformation of Rl,
to a step function O(p —p, ) about the critical thresh-
old p, as I goes to infinity. Rl. is also central to many
renormalization-group (RG) calculations (thus its sym-

bol), and has been examined extensively [2—7].
With newer techniques based upon hull-generating

methods, better values of p„and faster computers, it
is possible to study this function much more efficiently
than in the past. Here, I report on extensive numerical
simulations of Rl, using a method recently suggested by
Grassberger [8], and on a new exact evaluation of RL, for
I up to 7. The specific system studied is site percola-
tion on a 2D square lattice, with percolation defined as
spanning in one given direction with free boundaries in

the other direction —rule 'R& of Reynolds, Stanley, and
Klein (RSK) [3, 4].

This work yields a number of new results. First, it
confirms that Rl, (p, ) i

z as L —& oo, in accord with
universality with bond percolation [where RL, (p, ) =
for all L [9]], and Cardy's recent result [10], but not in

agreement with RG theory, which predicts that R~(p, )
should be equal to p, rather than 2. That is, it shows

that 'Ri does not renormalize at p, for site percolation.
Second, the scaling behavior of various estimates p(L) of

p, for finite systems is determined for the first time. The
"cell-to-cell" RG estimate, the "average p" and the "max-
imum p,

" all introduced by RSK, and a new "median p"
introduced here, are all shown to scale as

many previous studies of percolation. And third, these
simulations yield the precise value for p, :
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p, = 0.5927460 6 0.0000005 . (3)

The method of Grassberger [8] is illustrated in Fig. l.
When spanning occurs, the hull of the clusters connected
to the bottom boundary of the system will reach the top
boundary. This hull, however, can be generated indepen-
dently of the cluster, using a hull-generating walk [11].
In such a walk, the walker looks first to the neighbor
on the left, and moves directly to occupied sites, skips
blocked ones (going to the next clockwise neighbor), and
makes undecided sites occupied with probability p and
vacant otherwise. Thus, to simultaneously simulate a
system and check for spanning, the walk is carried out
on a square lattice of blank (undetermined) sites, with a
row of occupied sites added to the bottom, and a column
of blocked sites added to the left-hand side, as shown in

Fig. 1(b). The walk starts from the lower left-hand cor-
ner of the system; if an occupied site of the walk reaches
the top row, then the underlying system percolates, while
if a blocked site reaches the right-hand side, it does not.
The added row and column account for the conducting
boundary on the bottom and free boundary on the sides,
and assure that the walk never stops before either the

J1 ~ J1 J1 J 1
W E iF E W

as L i oo, where v = 4/3 is the correlation-length ex-
ponent and c is a constant (different for each estimate).
This behavior is in contrast to the usual finite-size scaling
law

p(L) —p, —cL (2)

which applies to the RG fixed point. The faster conver-

gence of (1) has been seen, but not well recognized, in

FIG. I. (a) A typical system with L = 7 near the thresh-
old, showing the percolating cluster connecting from the bot-
tom to the top, and (b) the hull of the cluster only, as would
be generated by the hull-generating walk. A row of occupied
sites is added to the bottom, and a column of blocked sites is

added to the left-hand side. The occupied sites are shown as
solid circles and blocked ones as open circles. In (b), unde-

cided sites are blank.
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FIG. 2. A plot of (L+1.6)[RI.(p) —0.5] vs log~(L+1) of the
Monte Carlo data for p = 0.592745 (o), 0.5927465 (D), and
0.592 75 (z ), and the exact results evaluated at p = 0.592746
(x). The curves represent Rz, (p) given by (4).

top row or right column is reached.
In a moderate number (= 2 x 10 ) of simulations on lat-

tices up to L = 1280, Grassberger [8] found that Ri, (p, )
approaches the value 0.5 within about z%. Here, I have

carried out many more runs to verify this result and to
investigate the scaling behavior. I simulated 10, 4 x 10,
and 107 hulls at p = 0.592745, 0.5927465, and 0.59275,
respectively, on lattices of 1024 x 1024 sites (correspond-
ing to L = 1023, because of the added boundary row

and column). I also recorded intermediate results at
L = 3, 7, 15, . . . , 511. The values of p considered here are
close to our recent estimates of p„0.592 745 6 0.000002
[12] and 0.5927460 + 0.0000005 [13), determined by the
hull-gradient method [12, 14]. Each hull contained on
the average 1.11 x 10s occupied and vacant sites, so that
a total of 6 x 10i random numbers were generated

[15), requiring a few months computing time on about
a dozen computer workstations (Apollo 425, IBM R/S
6000) running simultaneously.

The results of these simulations are summarized in

Fig. 2, where (L + Lo)[Rr, (p) —0.5] is plotted against
L for the different p. This plot shows sensitively that
Ri(p, ) approaches the value 0.5 with a finite-size correc-
tion of order 1/L, Rg(p, ) 0.5+ bo/L, with bo —0.319.
The constant Lo —1.6 in this plot is used to correct for
higher-order terms; its value is determined by plotting

(L + Lp) [Rr, (p) —0.5] vs 1/Lz, and adjusting Lo to get
linear behavior (also yielding bo as the ordinate inter-

cept). I have not attempted to assign error bars on the
result R (p, ) = 0.5, since there is little doubt from these
simulations and from theoretical arguments that this is

exact.
The data points for the largest system considered are

Riots(0. 592 745) = 0.49985 +0.000 16, Ripzs(0. 592 7465)
= 0.50043 + 0.00008, and Riozs(0. 592 75) = 0.50090 6
0.00016, where the error bars represent expected sta-

tistical fluctuations. The predicted behavior (assuming
the horizontal-line fit shown in Fig. 2) is Riots(p, ) =
0.5+ bo/1023 = 0.50031. Comparing these values, I in-

fer the estimate of p, given in (3), which agrees with the
results given in Ref. [13].

For p near p„it is known [3) that Rz(p) Lii" for
large L, so that

RI, (p) ~ 0.5+ bp/L+ ai(p —p, )L i, (4)

where ai = 0.765 is determined below and also agrees
with the data of RSK. Plots of (4) are included in Fig. 2,
and it can be seen that this equation fits the simulation
data very well.

That the spanning probability for site percolation at
p, should be the same asymptotically as for bond perco-
lation can be seen from a simple universality argument:
At criticality, both systems should "look" the same when
viewed on a coarse length scale, and the function Ri, is
a coarse-grained quantity. This result has also recently
been proven by Cardy, who considers rectangular bound-
aries as well, using conformal field theory [10].

The result R~(p, ) = z, however, contradicts RG the-
ory [3, 16, 17] which maintains that the solution p'(L)
of the equation Ri(p') = p' is a good estimate for p, .
Since p'(L) ~ p, as L ~ oo, the RG conditions would

imply that R ~ p, —0.5927. . . rather than z as L ~ oo.
Thus, the RG theory does not apply here. That is, the
criterion of spanning in one direction for 2D site percola-
tion does not renormalize at p, . As a consequence of this
lack of renormalization, p'(L) converges with the rela-
tively slow "normal scaling" of (2). An analysis using (4)
verifies this behavior, with the coefficient in (2) given by
c = (p, - 0.5)/a, = 0.121.

Other estimates of p„however, converge an order in
L faster than normal scaling for this system. The simple
criterion Ri(p) = 0.5 gives an estimate po s(L) which,
according to (4), converges as (1) with c = —bo/ai =
—0.417. To compare these two estimates, note that for
a system of size L = 500, p' difFers from p, by 0.0011,
while po s difFers by only —0.000008.

Equation (4) also implies that RSK's cell-to-cell RG
estimate p, ,(L), which is the solution to the equation
Rl. (p) = Rl. i(p), converges as (1) with c = vbo/ai
0.556. This result confirms the faster convergence of this
estimate compared with p that was observed by these
authors. RSK also introduced the estimates p(I ) = (p) —=

f pRi(p)dp, and p~~„(L),the value of p at the maxi-
mum of the distribution R'I (p). To discuss the behavior
of these two estimates, we need to first develop the finite-
size scaling of P further. Note that p, @05, and p are
respectively the mean, median, and maximum of the dis-
tribution Rl (p).

To proceed, I determined Rl. (p) for L ( 7 exactly, by
carrying out a binary search of all possible hulls, assign-
ing a weight of p for every occupied site and 1 —p for

2671



VOLUME 69, NUMBER 18 P H YSICAL R EV I EW LETTERS 2 NOVEMBER 1992

where ao = 2. The ao, ai, and bo terms give (4), which
represents the small-x behavior of these equations. Ana-

lyzing the exact expressions for L & 7, I find a3 = —0.50,
b1 = 0.466, b2 = —0.176, and 63 = —0.21.

Equations (5)—(7) imply that both p ~„andp(L) con-
verge as (1) with c given by —62/(3as) = —0.11 and by

f zf2(x) dz, respectively. This predicted behavior of

p is consistent with the work of RSK, whose plot of L
vs p (Fig. 13 of Ref. [4]; see also [19]) is essentially ver-

tical, indicating a higher-order scaling behavior. Note
that this scaling behavior is a consequence of f,'(x) be-
ing a symmetric function —if it were not, then these two
estimates would scale as (2).

Thus, I find that the estimates p, po, s, p,„,and p, ,
all converge as (1), with coefficients summarized in Table
II. In the scaling limit, these estimates all become iden-
tical to p„and (1) reflect the correction-to-scaling term.
That such estimates should behave this way is suggested
in the work of Binder and Heermann [18], who remark
that, as a consequence of Rl, (p) being a function of only
x in the scaling limit, the curves of RL, (p) for different
finite L will intersect at a common point, apart from
corrections to scaling. As we have seen, that common

point is at (R, p) = (2, p, ), and the corrections (for site

percolation) are given by (1).
To confirm these predictions for the behavior of the

various estimates for p„I have calculated their values

using the exact expressions for L & 7. The results are
plotted in Fig. 3 as a function of (L+ Li) i s, where

the constant Li = 1.4 was chosen to correct (roughly)
all the curves' higher-order terms. Even for such small

L, the data for all estimates (except, as expected, the
RG estimate p*) are nearly linear. The slopes of these
lines for po s, p~,„,and p, , are close to the predicted
values of c given above, and, for p, I find c = —0.55.
Note p & po s ( p,„,indicating that R'I (p) is skewed

to the left. Also, it can be seen that p~,„gives the best
estimate of p, . From these results for I & 7, one can

easily estimate p, within an error of about +0.0005. The
value of v can also be confirmed to fairly high accuracy.

The results presented here pertain only to systems that
are square and satisfy 7Z, i. For other systems, fi(x) may

not be symmetric, R (p, ) may not be equal to 2, and

consequently some or all of the estimates may not scale

as (1). This explains why p was found to scale as (2)

every blocked site. Using only the hulls is far more ef-
ficient than the conventional procedure of enumerating
every realization of the lattice, and it allowed me to ex-
tend the number of known polynomials [4] by three. The
enumeration for L = 6 (20 650 432 hulls) required 3 min
of CPU time on an IBM R/S 6000, while that for L = 7

(18 871 178 030 hulls, compared with 24s = 5.6 x lpi4

complete realizations) required 65 h. In Table I, I list
the resulting expressions for R'I (p), showing factoriza-
tion by [p(l —p)], which implies that the first L —1

derivatives of RI, (p) are zero at both p = 0 and 1. The
values of Rl. (0.592746) for L & 7 determined from these
polynomials are included in Fig. 2.

Now, (4) suggests that the finite-size scaling behavior
of Rl. (p) is of the form

R (p) - f (*)+(I/L)f~(z)+ (5)

for large L, where z = (p —p, )Li/" and fi(—oo) = 0,
fi(oo) = 1, f2(—oo) = fq(oo) = 0. The function fi(x)
represents the scaling limit (L ~ oo and p ~ p, with z
constant) of Rg(p) [18], and is a universal function for
all 2D square systems satisfying 'Ri. Furthermore, by
virtue of universality with bond percolation, fi(x) inust
be even. For small x, therefore

fi(x) Gp + aiz + Qsx +3

f2(x) bp+ biz+ b2z +bsx +

(6)

(7)

TABLE I. Exact expressions for R'r, {p). The first three
agree with RSK [4].

TABLE II. Values of the coefficient c in (I) or (2) for the
various estimates p(L) of p, .

Estimate Equation

(p, —0.5)/ai = 0.121j xf2(x)dx = —0.55
—bp/ai = —0.417
—b2/(3a3) = —0.11
ubp/ai = 0.556

(2)
(1)
(1)
(1)
(1)

Po.5

@max

PC —C

R'(p) = 4p(1 —p)(1+p)

Rl(p) = p'(1 —p)'(9+ 34p+ 29p' —30p'+ 9p')

R' (p) = 4p'(1 p)'(4+2?p—+6op'+54p' 35p' 99p'-+-
27p' + 46p' —12p' —4p')
Rs(p) = p (1 —p) (25+244p+910p2+1780ps+1?83p4-
562p —3722p —5660p + 1823p + 8222p + 5612p
I?084p»+10504p» 3524p»+1179pi4 260p»+25pis)

Rs (p) = 4p (1 —p) (9+115p+605p2+ 1785ps +3360p4 +
3675p +318p —6812p —16548ps —17485p +2340p

p11+54747p12 25ggPp13 166535p 41139p ~

338581p16 — 142902p1 —173191p18 + 185135p
61126p o + 1874p + 3663p —885p2s + 45p + 9p )

R'„(p) = ps(1 —p s(49 + 774p + 5259p2 + 20744ps +
54934p + 101688p + 122574p6 + 48920p —170295p
545926p —931219p 0 — 1021728p + 464618p
3535668p13 + 7371786p + 1812934p15 11753621p 6

29342232p +1566553p +46387036p +71120886p
65689076p — 206506493p + 171317982p 3 +
307523341p — 556512164p + 322800996p
32853804p —46710219p +18173946p +1550692p
2527898p + 703668p32 —108462p33 + 12799p 4

1050p3 + 49p )
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in agreement with the predicted value 0.50031. These
results confirm that (3) is a good estimate for p, .
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FIG. 3. Plots of the estimates p' (x), p, , (O), p~,„(Cl),
pes (o) and p (a) vs (L+ 1.4) ' for 3 & L & 7, verifying
that all but p' follow (1).

rather than (1) in Ref. [6], where a triangular lattice
whose boundary is effectively a rhombus was studied, in
Ref. [4], where different spanning conditions for a square
were considered, and in Ref. [20], where a square system
with periodic boundary conditions on one pair of sides
was investigated. In the latter paper, the authors remark
that obtaining more precise results for free boundary con-
ditions than for periodic ones is unusual; here we see that
this is a consequence of free side boundaries on a square
system being a very special case.

Likewise, the convergence of the RG estimate for t e
critical point will vary from system to system; for p' to
converge faster than normal scaling, RL, (p, ) must coin-
cide with p„atleast asymptotically for large L. For
site percolation on the square lattice and a square sys-
tem shape with rule 'Rq, this coincidence does not occur.
While there is undoubtedly some set of conditions (shape
and rule) where the RG equation is asymptotically fol-
lowed for site percolation, those conditions will be specific
for that system. There can be no universal spanning rule
that renormalizes for all lattices and percolation types,
because R (p, ) is universal while p, is specific for each
system. This uncertainty in having proper renormaliza-
tion makes application of the RG method to this perco-
lation problematic.

I thank P. Grassberger for suggesting this problem and
for sending preprints of his work, and gratefully acknowl-
edge support from NSF Grant No. DMR-9122341 and the
IBM/UM Distributed Computing Initiative.

Note added. —In a recent paper studying spanning for
general rectangular systems, Langlands et al. [21] have
also shown that R~(p, ) —+

2 for a square system. Also, I
= 0.592 746have carried out additional simulations at p =

(2 x 107 hulls), and find that the data for large L fall
close to the straight line of Fig. 2. For example, the
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